Muutke küpsiste eelistusi

E-raamat: Handbook of Ultra-Wideband Short-Range Sensing - Theory, Sensors, Applications: Theory, Sensors, Applications [Wiley Online]

  • Formaat: 844 pages
  • Ilmumisaeg: 14-Nov-2012
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527651810
  • ISBN-13: 9783527651818
  • Wiley Online
  • Hind: 269,61 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 844 pages
  • Ilmumisaeg: 14-Nov-2012
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527651810
  • ISBN-13: 9783527651818
Sachs (Ilmenau University of Technology, Germany) offers an overview of theoretical, implementation, and application aspects of low-power ultra-wideband (UWB) sensors, writing for students, engineers, and researchers with background in undergraduate mathematics, signal and system theory, electric circuit theory, and electromagnetic wave propagation. The book begins with a primer on UWB, then discusses UWB sensing electronics, peculiarities of UWB radar, the vector character of the electromagnetic wave, basic time domain models of wave propagation, UWB radar, and electromagnetic fields and waves in time and frequency. Example applications are given. A companion web site contains a wealth of reference appendices, along with figures and videos. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Ranging from the theoretical basis of UWB sensors via implementation issues to applications, this much-needed book bridges the gap between designers and appliers working in civil engineering, biotechnology, medical engineering, robotic, mechanical engineering, safety and homeland security.
From the contents:
* History
* Signal and systems in time and frequency domain
* Propagation of electromagnetic waves (in frequency and time domain)
* UWB-Principles
* UWB-antennas and applicators
* Data processing
* Applications
Preface xv
List of Contributors
xix
1 Ultra-Wideband Sensing - An Overview
1(30)
1.1 Introduction
1.2 Ultra-Wideband - Definition and Consequences of a Large Bandwidth
7(9)
1.2.1 Basic Potentials of Ultra-Wideband Remote Sensing
9(1)
1.2.2 Radiation Regulation
10(4)
1.2.2.1 Implication of UWB Radiation on Biological Tissue
14(2)
1.3 A Brief History of UWB Technique
16(1)
1.4 Information Gathering by UWB Sensors
17(14)
References
27(4)
2 Basic Concepts on Signal and System Theory
31(168)
2.1 Introduction
31(1)
2.2 UWB Signals, Their Descriptions and Parameters
32(39)
2.2.1 Classification of Signals
32(1)
2.2.1.1 Types of Stimulus Signals
32(1)
2.2.1.2 Random Process
33(1)
2.2.1.3 Analogue and Digital Signals
34(1)
2.2.2 Signal Description and Parameters of Compact Signals in the Time domain
35(1)
2.2.2.1 Basic Shape Parameters
35(3)
2.2.2.2 Lp-norm
38(2)
2.2.2.3 Shape Factors
40(1)
2.2.2.4 Time Position
41(1)
2.2.2.5 Integral Values of Pulse Duration
42(1)
2.2.3 Statistical Signal Descriptions
43(1)
2.2.3.1 Probability Density Function and Its Moments
43(1)
2.2.3.2 Individual Signal
44(1)
2.2.3.3 Random Process
45(4)
2.2.4 Signal Description of Continuous Wave (CW) UWB Signals
49(1)
2.2.4.1 Auto-Correlation Function
50(2)
2.2.4.2 Cross-Correlation Function
52(2)
2.2.5 Frequency Domain Description
54(1)
2.2.5.1 The Fourier Series and Fourier Transformation
55(4)
2.2.5.2 Some Properties and Parameters of a Spectrum
59(2)
2.2.5.3 Time-Bandwidth Products
61(4)
2.2.6 Doppler Scaling and Ambiguity Function
65(6)
2.3 Some Idealized UWB Signals
71(23)
2.3.1 Rectangular Unipolar and Bipolar Pulse Trains
72(1)
2.3.2 Single Triangular Pulse
72(1)
2.3.3 Sinc Pulse
73(2)
2.3.4 Gaussian Pulses
75(4)
2.3.5 Binary Pseudo-Noise Codes
79(7)
2.3.6 Chirp
86(2)
2.3.7 Multi-Sine
88(3)
2.3.8 Random Noise
91(3)
2.4 Formal Description of Dynamic Systems
94(38)
2.4.1 Introduction
94(2)
2.4.2 Time Domain Description
96(1)
2.4.2.1 Linearity
96(1)
2.4.2.2 The Impulse Response Function or the Time Domain Green's Function
97(6)
2.4.2.3 Extraction of Information from the Impulse Response Function
103(4)
2.4.3 The Frequency Response Function or the Frequency Domain Greens Function
107(2)
2.4.3.1 Properties of the Frequency Response Function and the Utility of the Frequency Domain
109(2)
2.4.3.2 Parameters of the Frequency Response Function
111(1)
2.4.4 Parametric System Descriptions
112(1)
2.4.4.1 Differential Equation
112(2)
2.4.4.2 The Laplace Transform
114(1)
2.4.4.3 Transfer Function
115(3)
2.4.4.4 State Space Model
118(6)
2.4.5 Time Discrete Signal and Systems
124(1)
2.4.5.1 Discrete Fourier Transform
125(1)
2.4.5.2 Circular Correlation and Convolution
126(1)
2.4.5.3 Data Record Length and Sampling Interval
127(5)
2.5 Physical System
132(14)
2.5.1 Energetic Interaction and Waves
132(3)
2.5.2 N-Port Description by IV-Parameters
135(3)
2.5.3 N-Port Description by Wave Parameters
138(4)
2.5.4 Determination of N-Port Parameters
142(4)
2.6 Measurement Perturbations
146(49)
2.6.1 Additive Random Noise and Signal-to-Noise Ratio
146(2)
2.6.1.1 Signal-to-Noise Ratio (SNR)
148(1)
2.6.1.2 Sliding Average
149(2)
2.6.1.3 Synchronous Averaging
151(1)
2.6.1.4 Matched Filter/Correlator
152(5)
2.6.1.5 Device Internal Noise
157(1)
2.6.1.6 Quantization Noise
158(8)
2.6.1.7 IRF and FRF Estimation from Noisy Data
166(2)
2.6.2 Narrowband Interference
168(2)
2.6.3 Jitter and Phase Noise
170(1)
2.6.3.1 Trigger Jitter
170(3)
2.6.3.2 Phase Noise
173(2)
2.6.3.3 Cycle Jitter
175(2)
2.6.3.4 Oscillator Stability
177(1)
2.6.4 Linear Systematic Errors and their Correction
178(11)
2.6.5 Non-Linear Distortions
189(2)
2.6.6 Dynamic Ranges
191(4)
2.7 Summary
195(4)
References
195(4)
3 Principle of Ultra-Wideband Sensor Electronics
199(164)
3.1 Introduction
199(2)
3.2 Determination of the System Behaviour by Pulse Excitation
201(42)
3.2.1 Basic Principle
201(2)
3.2.2 Pulse Sources
203(1)
3.2.2.1 Monolithically Integrated Pulse Sources
203(1)
3.2.2.2 Tunnel Diode
204(1)
3.2.2.3 Avalanche Transistor
204(2)
3.2.2.4 Step Recovery Diode (Snap-Off Diode)
206(1)
3.2.2.5 Non-Linear Transmission Line
206(1)
3.2.3 Voltage Capturing by Sub-Sampling (Stroboscopic Sampling)
207(1)
3.2.3.1 Preliminary Remarks
207(1)
3.2.3.2 Principles of Voltage Sampling
208(15)
3.2.3.3 Timing of Data Capturing by Sub-Sampling
223(13)
3.2.4 Voltage Capturing by 1 bit Conversion
236(4)
3.2.5 Peculiarities of Sensors with Pulse Excitation
240(3)
3.3 Determination of the System Behaviour by Excitation with Pseudo-Noise Codes
243(53)
3.3.1 Generation of Very Wideband PN-Codes
243(4)
3.3.2 IRF Measurement by Wideband Correlation
247(1)
3.3.3 The Sliding Correlator
248(3)
3.3.4 Basic Concept of Digital Ultra-Wideband PN-Correlation
251(4)
3.3.4.1 Digital Impulse Compression
255(2)
3.3.4.2 Transformation into the Frequency Domain
257(1)
3.3.4.3 Removal of Stationary Data
258(4)
3.3.5 Some Particularities of PN-Sequence Devices
262(4)
3.3.6 System Extensions of Digital PN-Correlator
266(1)
3.3.6.1 Improving the Sampling Efficiency
266(9)
3.3.6.2 MiMo-Measurement System
275(3)
3.3.6.3 Up-Down-Conversion
278(5)
3.3.6.4 Equivalent Time Oversampling
283(4)
3.3.6.5 Beam Steering and Doppler Bank
287(6)
3.3.6.6 Transmitter-Receiver Separation
293(3)
3.4 Determination of the System Behaviour by Excitation with Sine Waves
296(27)
3.4.1 Introduction
296(1)
3.4.2 Measurement of the Frequency Response Functions
297(1)
3.4.2.1 Homodyne Receiver
297(2)
3.4.2.2 Heterodyne Receiver
299(3)
3.4.3 Sine Wave Sources of Variable Frequency
302(4)
3.4.4 Operational Modes
306(1)
3.4.4.1 Stepped Frequency Continuous Wave (SFCW)
306(11)
3.4.4.2 Continuous Frequency Variation
317(6)
3.5 The Multi-Sine Technique
323(7)
3.6 Determination of the System Behaviour with Random Noise Excitation
330(11)
3.6.1 Time Domain Approaches
334(4)
3.6.2 Frequency Domain Approaches
338(3)
3.7 Measuring Arrangements
341(13)
3.7.1 Capturing of Voltage and Current
341(2)
3.7.2 Basic Measurement Circuit
343(4)
3.7.3 Methods of Wave Separation
347(1)
3.7.3.1 Wave Separation by Time Isolation
347(4)
3.7.3.2 Wave Separation by Directional Couplers
351(1)
3.7.3.3 Wave Separation by Voltage Superposition
351(2)
3.7.3.4 Capturing of E- and H-Field
353(1)
3.8 Summary
354(9)
References
356(7)
4 Ultra-Wideband Radar
363(222)
4.1 Introduction
363(1)
4.2 Distributed System - the Measurement Problem
363(5)
4.3 Plane Wave and Isotropic Waves/Normalized Wave
368(11)
4.4 Time Domain Characterization of Antennas and the Free Space Friis Transmission Formula
379(9)
4.4.1 Introduction
379(3)
4.4.2 Antenna as Transmitter
382(2)
4.4.3 Antenna as Receiver
384(1)
4.4.4 Transmission Between Two Antennas - The Scalar Friis Transmission Formula
385(3)
4.5 Indirect Transmission Between Two Antennas The Scalar Time Domain Radar Equation
388(17)
4.5.1 Wave Scattering at Planar Interfaces
388(3)
4.5.2 Wave Scattering at Small Bodies
391(14)
4.6 General Properties of Ultra-Wideband Antennas
405(41)
4.6.1 Canonical Minimum-Scattering Antenna
409(3)
4.6.2 Spectral Domain Antenna Parameters
412(5)
4.6.3 Time Domain Antenna Parameters
417(3)
4.6.3.1 Effective Centre of Radiation
420(4)
4.6.3.2 Boresight Direction and Canonical Position
424(1)
4.6.3.3 Time Domain Directive Gain Pattern
425(1)
4.6.3.4 Spherical Deformation Pattern
425(1)
4.6.3.5 Fidelity and Fidelity Pattern
425(1)
4.6.3.6 Structural Efficiency Pattern
426(1)
4.6.4 Parametric Description of Antenna and Scatterer
427(3)
4.6.5 Distance and Angular Dependence of Antenna Functions and Parameters
430(5)
4.6.6 The Ideal Short-Range UWB Radar Equation
435(5)
4.6.7 Short-Range Time Domain Antenna Measurements
440(1)
4.6.7.1 Transmission Measurement Between Two Antennas
440(3)
4.6.7.2 Direct Measurement of Antenna Impulse Response
443(2)
4.6.7.3 Impulse Response Measurement by Backscattering
445(1)
4.6.7.4 Measurement of Antenna Backscattering
446(1)
4.7 Basic Performance Figures of UWB Radar
446(41)
4.7.1 Review on Narrowband Radar Key Figures and Basics on Target Detection
446(9)
4.7.2 Range Resolution of UWB Sensors
455(4)
4.7.3 Accuracy of Range Measurement
459(1)
4.7.3.1 Statement of the Problem
459(4)
4.7.3.2 Noise- and Jitter-Affected Ultra-Wideband Signals
463(5)
4.7.3.3 Noise and Jitter Robustness of Various UWB Sensor Concepts
468(1)
4.7.3.4 Short-Pulse Excitation and Dual Ramp Sampling Control
469(1)
4.7.3.5 Analogue Short-Pulse Correlation and Dual Sine Timing
470(1)
4.7.3.6 Ultra-Wideband CW Stimulation and Dual Pulse Timing
471(2)
4.7.3.7 Random Uncertainty of Time Position Estimation
473(10)
4.7.3.8 Time Position Error Caused by Drift and Its Correction
483(4)
4.8 Target Detection
487(32)
4.8.1 Preliminary Remarks
487(2)
4.8.2 Target Detection Under Noisy Conditions
489(1)
4.8.2.1 Detections Based on a Single Measurement
490(6)
4.8.2.2 Detection Based on Repeated Measurements
496(11)
4.8.3 Detection of Weak Targets Closely Behind an Interface
507(2)
4.8.3.1 Modelling of the Receiving Signal
509(1)
4.8.3.2 Hidden Target Detection
510(2)
4.8.3.3 Blind Range Reduction
512(7)
4.9 Evaluation of Stratified Media by Ultra Wideband Radar
519(11)
4.9.1 Measurement arrangement and Modelling of Wave Propagation
519(7)
4.9.2 Reconstruction of Coplanar Layer Structure
526(4)
4.10 Ultra-Wideband Short-Range Imaging
530(55)
4.10.1 Introduction
530(1)
4.10.2 The Basic Method of Short-Range Imaging
531(4)
4.10.3 Array-Based Imaging
535(3)
4.10.3.1 Ultra-Wideband Radar Array
538(1)
4.10.3.2 Point Spread Function and Image Resolution
539(5)
4.10.3.3 Steering Vector Design
544(8)
4.10.3.4 Sparse Scene Imaging
552(10)
4.10.3.5 Array Configurations and Remarks on UWB Radar Imaging
562(3)
4.10.4 Shape Reconstruction by Inverse Boundary Scattering
565(1)
4.10.4.1 Shape Reconstruction by Quasi-Wavefront Derivation
565(3)
4.10.4.2 Shape Reconstruction Based on Tangent Planes
568(1)
4.10.4.3 Planar Interface Localization by Mono-Static Measurements
568(4)
4.10.4.4 Bi-Static Measurement
572(5)
4.10.4.5 Estimation of Reconstruction Errors
577(1)
References
578(7)
5 Electromagnetic Fields and Waves in Time and Frequency
585(66)
5.1 Introduction
585(1)
5.2 The Fundamental Relations of the Electromagnetic Field
586(10)
5.2.1 Maxwell's Equations and Related Relations
587(5)
5.2.2 Boundary Conditions
592(1)
5.2.3 Energy Flux of Electromagnetic Radiation
593(1)
5.2.4 Radiation Condition
594(1)
5.2.5 Lorentz Reciprocity
594(2)
5.3 Interaction of Electromagnetic Fields with Matter
596(5)
5.4 Plane Wave Propagation
601(16)
5.4.1 The Electromagnetic Potentials
602(2)
5.4.2 Time Harmonic Plane Wave
604(2)
5.4.3 fp-Space Description and Dispersion Relation
606(2)
5.4.4 Propagation in Arbitrary Direction
608(3)
5.4.5 Time Domain Description of Wideband Plane Wave
611(3)
5.4.6 Scattering of a Plane Wave at a Planar Interface
614(3)
5.5 The Hertzian Dipole
617(14)
5.5.1 The Dipole as Transmitter
618(4)
5.5.2 Far-Field and Normalized Dipole Wave
622(2)
5.5.3 The Dipole as Field Sensor and Self-Reciprocity
624(1)
5.5.4 Interfacial Dipole
625(6)
5.6 Polarimetric Friis Formula and Radar Equation
631(5)
5.7 The Concept of Green's Functions and the Near-Field Radar Equation
636(15)
References
647(4)
6 Examples and Applications
651(150)
6.1 Ultra-Wideband Sensing - The Road to New Radar and Sensor Applications
651(12)
6.1.1 Potential of Ultra-Wideband Sensing - A Short Summary
651(3)
6.1.2 Overview on Sensor Principles
654(1)
6.1.3 Application of Ultra-Wideband Sensing
655(8)
6.2 Monolithically Integration of M-Sequence-Based Sensor Head
663(25)
Martin Kmec
6.2.1 Introduction
663(1)
6.2.2 Technology and Design Issues
663(1)
6.2.2.1 Sensor IC Technology Choice
663(3)
6.2.2.2 Design Flow
666(1)
6.2.2.3 Architecture-Specific Circuit Definitions
667(1)
6.2.2.4 Technology Figure-of-Merits
667(1)
6.2.3 Multi-Chip and Single-Chip Sensor Integration
668(4)
6.2.4 The UWB Single-Chip Head
672(1)
6.2.4.1 Architecture and Design Philosophy
672(2)
6.2.4.2 Implemented Circuit Topology
674(2)
6.2.4.3 Single-Chip Floor Plan
676(2)
6.2.5 Particular Single-Chip Blocks
678(1)
6.2.5.1 Stimulus Generator
678(1)
6.2.5.2 The Synchronization Unit
679(1)
6.2.5.3 Transmitter I/O Buffers
680(1)
6.2.5.4 Ultra-Wideband Receivers
681(4)
6.2.6 Single-Chip Test Prototypes
685(3)
6.3 Dielectric UWB Microwave Spectroscopy
688(12)
Frank Daschner
Michael Kent
Reinhard Knochel
6.3.1 Introduction
688(2)
6.3.2 Time Domain Reflectometer for Dielectric Spectroscopy
690(1)
6.3.2.1 Probe
690(1)
6.3.2.2 Instrument Requirements
690(1)
6.3.2.3 Sequential Sampling
691(1)
6.3.2.4 System Design
692(1)
6.3.2.5 Hardware Effort
693(1)
6.3.3 Signal Processing
693(1)
6.3.3.1 Principal Component Analysis and Regression
694(3)
6.3.3.2 Artificial Neural Networks
697(1)
6.3.4 Summary
698(2)
6.4 Non-Destructive Testing in Civil Engineering Using M-Sequence-Based UWB Sensors
700(14)
Ralf Herrmann
Frank Bonitz
6.4.1 Assessment of Sewer Pipe Embedding
701(1)
6.4.1.1 Pipe Inspection Sensor
702(1)
6.4.1.2 Test Bed and Data Processing
702(2)
6.4.1.3 Measurement Example for the Bedding of a Plastic Pipe
704(2)
6.4.2 Inspection of the Disaggregation Zone in Salt Mines
706(1)
6.4.2.1 M-Sequence UWB Sensor for Detection of Salt Rock Disaggregation
707(1)
6.4.2.2 Data Processing for Detection of Disaggregation
707(2)
6.4.2.3 Example Measurement: A 3D View of Salt Rock Disaggregation in an Old Tunnel
709(3)
6.4.2.4 Example Measurement: Subsidence Analysis in a Fresh Tunnel Stub
712(2)
Acknowledgements
714(1)
6.5 UWB Cardiovascular Monitoring for Enhanced Magnetic Resonance Imaging
714(12)
Olaf Kosch
Florian Thiel
Ulrich Schwarz
Francesco Scotto di Clemente
Matthias Hein
Frank Seifert
6.5.1 Introduction
714(2)
6.5.2 Impact of Cardiac Activity on Ultra-Wideband Reflection Signals from the Human Thorax
716(1)
6.5.3 Compatibility of MRI and UWB Radar
717(1)
6.5.3.1 Measurements on a Stratified Human Thorax Phantom
717(1)
6.5.3.2 Design Considerations for MR Compatible Ultra-Wideband Antennas
718(2)
6.5.4 Interpretation of Physiological Signatures from UWB Signals
720(1)
6.5.4.1 Simultaneous ECG/UWB Measurements
720(2)
6.5.4.2 Appropriate Data Analysis and Resulting Multiple Sensor Approach
722(1)
6.5.4.3 Physiological Interpretation
722(2)
6.5.5 MR Image Reconstruction Applying UWB Triggering
724(1)
6.5.6 Outlook and Further Applications
724(2)
Acknowledgement
726(1)
6.6 UWB for Medical Microwave Breast Imaging
726(19)
Marko Helbig
6.6.1 Introduction
726(1)
6.6.1.1 Non-Contact Breast Imaging
727(1)
6.6.1.2 Contact-Mode Breast Imaging
728(1)
6.6.2 Breast and Body Surface Reconstruction
728(1)
6.6.2.1 Method
728(4)
6.6.2.2 Detection and Elimination of Improper Wavefronts
732(3)
6.6.2.3 Exemplary Reconstruction Results and Influencing Factors
735(5)
6.6.3 Contact-Based Breast Imaging
740(1)
6.6.3.1 UWB Breast Imaging in Time Domain
740(1)
6.6.3.2 Measurement Setup Based on Small Antennas
741(2)
6.6.3.3 Imaging Results of Phantom Trials
743(1)
Acknowledgement
744(1)
6.7 M-Sequence Radar Sensor for Search and Rescue of Survivors Beneath Collapsed Buildings
745(17)
Egor Zaikov
6.7.1 Principle and Challenges
746(2)
6.7.2 The Radar System
748(1)
6.7.3 Pre-Processing and Breathing Detection
749(3)
6.7.3.1 Breathing Enhancement by Its Periodicity
752(1)
6.7.3.2 Signal Enhancement in Propagation Time
753(3)
6.7.4 Non-Stationary Clutter Reduction
756(2)
6.7.5 Localization of Breathing People
758(3)
6.7.6 Conclusions and Future Work
761(1)
Acknowledgement
762(1)
6.8 Multiple Moving Target Tracking by UWB Radar Sensor Network
762(10)
Dusan Kocur
Jana Rovakova
Daniel Urdzik
6.8.1 Introduction
762(2)
6.8.2 Shadowing Effect
764(1)
6.8.3 Basic Concept of UWB Sensor Network for Short-Range Multiple Target Tracking
765(2)
6.8.4 Experimental Results
767(4)
6.8.5 Conclusions
771(1)
6.9 UWB Localization
772(29)
Rudolf Zetik
6.9.1 Classification of UWB Localization Approaches
772(1)
6.9.1.1 Two-Step Localization versus Imaging
773(1)
6.9.1.2 Active versus Passive Approach
774(1)
6.9.1.3 Time of Arrival versus Time Difference of Arrival
775(2)
6.9.2 Active Localization
777(2)
6.9.3 Passive Localization
779(1)
6.9.3.1 Detection of Targets
779(1)
6.9.3.2 Passive Localization of Targets
780(1)
6.9.3.3 Measured Example
781(2)
6.9.4 Imaging of Targets
783(4)
6.9.5 Further Challenges
787(2)
References
789(12)
Appendix 801(2)
Symbols and Abbreviations 803(1)
Symbols 803(7)
Notations 810(1)
Structure of Multi-Dimensional Data 811(1)
Abbreviations 812(5)
Index 817
Jürgen Sachs earned a Doctorate (Dr.-Ing.) in Electrical Engineering (surface acoustic wave devices) and a Dipl.-Ing. degree in Electrical Engineering (semi-conductor technology and components). Since 1985, he is Senior Lecturer at TU Ilmenau, Germany. He teaches "Basics of Electrical Measurement Technology", "Methods of measurement for the information and communication technique", and "Eatellite navigation and radar". He is head of several research projects, and inter alia coordinator of European projects for humanitarian demining. His research areas cover RF-signal analysis and RF-system identification; Surface Penetrating Radar, Impulse Radiating Antennas; Ultra wideband (UWB) methods and their application in high resolution radar and impedance spectroscopy, digital processing of UWB-signals; UWB-Array-processing; and humanitarian anti-personal mine detection.