Muutke küpsiste eelistusi

E-raamat: Imaging Technologies and Transdermal Delivery in Skin Disorders [Wiley Online]

Edited by , Edited by , Edited by
  • Formaat: 504 pages
  • Ilmumisaeg: 15-Jan-2020
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527814639
  • ISBN-13: 9783527814633
  • Wiley Online
  • Hind: 185,03 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 504 pages
  • Ilmumisaeg: 15-Jan-2020
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527814639
  • ISBN-13: 9783527814633
Provides the latest information on imaging technologies and transdermal delivery in skin disorders

This important, timely book covers the latest understanding about today's major skin disorders, the development of imaging technologies for skin diagnosis, and the applications of micro/nano-technologies for the treatment of skin complications. It also places great emphasis on the critical role that interdisciplinary science occupies to achieve the requisite level of understanding of skin conditions and their management, which is essential to creating technologies that work.

Imaging Technologies and Transdermal Delivery in Skin Disorders starts by outlining the structural characteristics of skin and skin appendages. It then discusses the key pathways involved in skin growth and development. Clinical presentations, pathophysiological mechanisms, and current clinical practices used to treat diseases affecting the skin are then introduced. Common preclinical models used for studying the mechanisms of diverse skin diseases, validation of novel therapeutic targets, and screening of new drugs to treat these diseases are also covered. The book examines the latest imaging technologies for understanding in vivo skin changes, as well as technologies such as high-resolution ultrasound imaging, quantitative Magnetic Resonance Imaging, high-resolution Optical Coherence Tomography, and emerging hybrid-imaging modalities. It concludes with chapters introducing emerging drug delivery technologies and potential future innovative developments.

* Presents up-to-date knowledge of the skin biology and pathologies
* Introduces advancements in the topic of imaging technology for tracing the drug delivery process, which is rarely systematically reported by other counterparts
* Covers the latest development in three inter-related directions of drug delivery, imaging, and skin disease intersect for skin research
* Provides an overview of the latest development of diagnostic and therapeutic technologies for skin diseases
Imaging Technologies and Transdermal Delivery in Skin Disorders will be of great interest to analytical chemists, materials scientists, pharmaceutical chemists, clinical chemists, biotechnologists, bioengineers, cosmetics industry, and dermatologists.
Foreword xvii
1 Skin Structure and Biology 1(14)
Wei-Meng Woo
1.1 Introduction
1(1)
1.2 Skin Structure
2(7)
1.2.1 Overview of Skin Tissue Organization
2(1)
1.2.1.1 Thick Skin and Thin Skin
2(1)
1.2.2 Epidermis
3(3)
1.2.2.1 Stratum Basale
5(1)
1.2.2.2 Stratum Spinosum S
1.2.2.3 Stratum Granulosum
6(1)
1.2.2.4 Stratum Lucidum
6(1)
1.2.2.5 Stratum Corneum
6(1)
1.2.3 Dermis
6(1)
1.2.4 Hypodermis
7(1)
1.2.5 Skin Appendages
8(1)
1.3 Skin Biology
9(3)
1.3.1 Homeostasis: Epidermal Self-renewal
9(1)
1.3.2 Formation of a Water Barrier
10(1)
1.3.3 Getting Across the Water Barrier
11(1)
References
12(3)
2 Wound Healing and Its Imaging 15(20)
Jiah Shin Chin
Leigh Madden
Sing Yian Chew
Anthony R.J. Phillips
David L. Becker
2.1 Hemostasis and Essential Inflammation
15(3)
2.2 Re-epithelialization
18(1)
2.3 Granulation Tissue Formation
19(1)
2.4 Scar Tissue Formation
20(1)
2.5 Imaging of Wound Healing
21(1)
2.6 Macroscopic Digital Imaging for Wound Size
22(1)
2.7 Hyperspectral and Multispectral Imaging
22(1)
2.8 Near-Infrared Spectroscopy
23(1)
2.9 Raman Imaging
23(1)
2.10 Confocal Microscopy
24(1)
2.11 Multiphoton Imaging and Second Harmonics
24(3)
References
27(8)
3 Common Skin Diseases: Chronic Inflammatory and Autoimmune Disorders 35(26)
Navin Kumar Verma
Maurice Adrianus Monique van Steensel
Praseetha Prasannan
Zhi Sheng Poh
Alan D. Irvine
Hazel H. Oon
3.1 Introduction
35(1)
3.2 Psoriasis
36(4)
3.2.1 Definition and Prevalence
36(1)
3.2.2 Clinical Features, Pathogenesis, and Pathophysiology
37(2)
3.2.3 Diagnosis
39(1)
3.2.4 Therapy
40(1)
3.3 Atopic Dermatitis (AD)
40(3)
3.3.1 Definition and Prevalence
40(1)
3.3.2 Clinical Features, Pathogenesis, and Pathophysiology
41(1)
3.3.3 Diagnosis
42(1)
3.3.4 Therapy
43(1)
3.4 Scleroderma
43(2)
3.4.1 Definition and Prevalence
43(1)
3.4.2 Clinical Features, Pathogenesis, and Pathophysiology
44(1)
3.4.3 Diagnosis
44(1)
3.4.4 Therapy
45(1)
3.5 Dermatomyositis (DM)
45(2)
3.5.1 Definition and Prevalence
45(1)
3.5.2 Clinical Features, Pathogenesis, and Pathophysiology
46(1)
3.5.3 Diagnosis
46(1)
3.5.4 Therapy
47(1)
3.6 Cutaneous Lupus Erythematosus (CLE)
47(2)
3.6.1 Definition and Prevalence
47(1)
3.6.2 Clinical Features, Pathogenesis, and Pathophysiology
47(1)
3.6.3 Diagnosis
48(1)
3.6.4 Treatment
49(1)
3.7 Generalized Vitiligo (GV)
49(2)
3.7.1 Definition and Prevalence
49(1)
3.7.2 Clinical Features, Pathogenesis, and Pathophysiology
49(2)
3.7.3 Diagnosis SO
3.7.4 Treatment
51(1)
3.8 Concluding Remarks
51(1)
Acknowledgments
51(1)
References
52(9)
4 Common Skin Diseases: Autoimmune Blistering Disorders 61(22)
Navin Kumar Verma
Shermaine Wan Yu Low
Hazel H. Oon
Dermot Kelleher
Maurice Adrianus Monique van Steensel
4.1 Introduction
61(1)
4.2 Pemphigus
62(6)
4.2.1 Definition and Prevalence
62(1)
4.2.2 Clinical Features, Pathogenesis, and Pathophysiology
62(5)
4.2.2.1 Pemphigus Vulgaris (PV)
63(1)
4.2.2.2 Pemphigus Foliaceous (PF)
64(1)
4.2.2.3 Paraneoplastic Pemphigus (PNP)
64(2)
4.2.2.4 IgA Pemphigus
66(1)
4.2.2.5 Pemphigus Erythematosus (PE)
66(1)
4.2.2.6 Drug-Induced Pemphigus
66(1)
4.2.3 Diagnosis
67(1)
4.2.4 Treatment
67(1)
4.3 Pemphigoid
68(2)
4.3.1 Definition and Prevalence
68(1)
4.3.2 Clinical Features, Pathogenesis, and Pathophysiology
68(2)
4.3.2.1 Bullous Pemphigoid (BP)
68(1)
4.3.2.2 Mucous Membrane Pemphigoid (MMP)
69(1)
4.3.2.3 Pemphigoid Gestationis (PG)
69(1)
4.3.3 Diagnosis
70(1)
4.3.4 Treatment
70(1)
4.4 Dermatitis Herpetiformis (DH)
70(2)
4.4.1 Definition and Prevalence
70(1)
4.4.2 Clinical Features, Pathogenesis, and Pathophysiology
71(1)
4.4.3 Diagnosis
71(1)
4.4.4 Treatment
71(1)
4.5 Epidermolysis Bullosa Acquisita (EBA)
72(1)
4.5.1 Definition and Prevalence
72(1)
4.5.2 Clinical Features, Pathogenesis, and Pathophysiology
72(1)
4.5.3 Diagnosis
73(1)
4.5.4 Treatment
73(1)
4.6 Concluding Remarks and Future Directions
73(1)
Acknowledgments
74(1)
References
74(9)
5 Common Skin Diseases: Skin Cancer 83(22)
Tuyen T.L. Nguyen
Eric Tarapore
Scott X. Atwood
5.1 Introduction
83(1)
5.2 Basal Cell Carcinoma
83(5)
5.2.1 Risk Factors
84(1)
5.2.2 Classification
85(1)
5.2.3 Cell of Origin
85(1)
5.2.4 Signaling Pathways
86(1)
5.2.5 Common Treatments
87(1)
5.3 Squamous Cell Carcinoma
88(4)
5.3.1 Risk Factors
89(1)
5.3.2 Classification
89(1)
5.3.3 Cell of Origin
90(1)
5.3.4 Signaling Pathways
90(1)
5.3.5 Common Treatments
91(1)
5.4 Melanoma
92(3)
5.4.1 Risk Factors
92(1)
5.4.2 Classification
93(1)
5.4.3 Cell of Origin
94(1)
5.4.4 Signaling Pathways
94(1)
5.4.5 Common Treatments
94(1)
5.5 Concluding Remarks
95(1)
References
96(9)
6 Preclinical Models for Drug Screening and Target Validation 105(42)
Ivo J.H.M. de Vos
Julia Verbist
Maurice A.M. van Steensel
6.1 Introduction
105(1)
6.2 Ex Vivo Models of Human Skin
105(3)
6.2.1 Introduction
105(2)
6.2.2 Ex Vivo Models of Skin Barrier Function and Dermal Absorption
107(1)
6.2.3 Ex Vivo Models of Cutaneous Wound Healing
107(1)
6.2.4 Ex Vivo Hair Follicle Culture
108(1)
6.3 In Vitro Models of Human Skin
108(4)
6.3.1 Introduction
108(1)
6.3.2 Two-Dimensional Cell Culture Models
109(1)
6.3.3 Three-Dimensional Reconstructed Human Skin Models
109(3)
6.3.3.1 Reconstituted Human Epidermis Models
110(1)
6.3.3.2 Reconstituted Human Dermis Models
111(1)
6.3.3.3 Reconstituted Skin Equivalent Models
111(1)
6.3.3.4 Organoids
112(1)
6.4 In Vivo Animal Models
112(17)
6.4.1 Caenorhabditis elegans
112(1)
6.4.1.1 Introduction
112(1)
6.4.1.2 Anatomy and Physiology of the Roundworm Epidermis
112(1)
6.4.1.3 The Use of Caenorhabditis elegans to Study Cutaneous Wound Healing
113(1)
6.4.2 Drosophila melanogaster
113(3)
6.4.2.1 Introduction
113(1)
6.4.2.2 Anatomy and Physiology of the Fruit Fly Epidermis
114(1)
6.4.2.3 Studying Cutaneous Wound Healing Using Fruit Flies
114(1)
6.4.2.4 Insights in Cutaneous Innate Immunity from Drosophila melanogaster
115(1)
6.4.2.5 Fruit Fly Models of Bullous Dermatoses
115(1)
6.4.2.6 Fruit Fly Models of Skin Cancer
115(1)
6.4.3 Danio rerio
116(2)
6.4.3.1 Introduction
116(1)
6.4.3.2 Anatomy and Physiology of Zebrafish Skin
116(1)
6.4.3.3 Zebrafish Models to Study Pigmentation and Melanoma
117(1)
6.4.3.4 Studying Cutaneous Wound Healing Using Danio rerio
117(1)
6.4.3.5 Zebrafish as Platform for Drug Development
117(1)
6.4.3.6 Zebrafish Models of Genodermatoses
118(1)
6.4.4 Mus musculus
118(4)
6.4.4.1 Introduction
118(1)
6.4.4.2 Anatomy and Physiology of Murine Skin
119(1)
6.4.4.3 Murine Models for Studying Cutaneous Wound Healing
120(1)
6.4.4.4 Murine Models of Psoriasis
120(1)
6.4.4.5 Mouse Models of Autoimmune Bullous Dermatoses
120(1)
6.4.4.6 Studying Melanoma Using Mouse Models
121(1)
6.4.4.7 Mouse and Rat Models of Alopecia Areata
121(1)
6.4.4.8 Insights in Acne Pathogenesis and Comedolysis from Mouse Models
122(1)
6.4.5 Cavia porcellus
122(2)
6.4.5.1 Introduction
122(1)
6.4.5.2 Anatomy and Physiology of Guinea Pig Skin
123(1)
6.4.5.3 Studying Dermatophytoses Using Guinea Pigs
123(1)
6.4.5.4 Guinea Pig Models of Epidermal Permeability Topical Irritant Testing
123(1)
6.4.5.5 Studying Burn Wounds Using Guinea Pigs
123(1)
6.4.5.6 Guinea Pig Models for Pigmentation Studies
124(1)
6.4.6 Oryctolagus cuniculus
124(2)
6.4.6.1 Introduction
124(1)
6.4.6.2 Anatomy and Physiology of Leporine Skin
124(1)
6.4.6.3 Rabbit Models of Acne Venenata and Contact Dermatitis
125(1)
6.4.6.4 Rabbit Models of Cutaneous Wound Healing and Scarring
125(1)
6.4.6.5 Rabbit Models for Genodermatoses
126(1)
6.4.7 Canis lupus familiaris
126(2)
6.4.7.1 Introduction
126(1)
6.4.7.2 Anatomy and Physiology of Dog Skin
126(1)
6.4.7.3 Dog Models of Atopic Dermatitis
126(1)
6.4.7.4 Dog Models of Autoimmune Disorders
127(1)
6.4.7.5 Studying Follicular Hyperkeratosis and Keratolysis in Dogs
127(1)
6.4.7.6 Dog Models of Mucosal Melanoma
127(1)
6.4.7.7 Bullous Dermatoses in Dogs
128(1)
6.4.8 Sus scrofa domesticus
128(20)
6.4.8.1 Introduction
128(1)
6.4.8.2 Anatomy and Physiology of Pig Skin
128(1)
6.4.8.3 Porcine Models of Cutaneous Wound Healing
129(1)
6.4.8.4 Pig Models of Cutaneous Permeability
129(1)
References
129(18)
7 Skin Tissue Engineering with Nanostructured Materials 147(22)
Zahra Davoudi
Qun Wang
7.1 Introduction
147(1)
7.2 Nanostructured Materials for Skin Tissue Engineering
148(6)
7.2.1 Natural Biomaterials for Skin Tissue Engineering
148(4)
7.2.1.1 Collagen, CS, and Blend of Two
148(1)
7.2.1.2 Fibronectin and Hyaluronic Acid (HA)
149(3)
7.2.2 Synthetic Polymers for Skin Tissue Engineering
152(1)
7.2.2.1 PLA, PGA, and Polyurethane Homopolymers
152(1)
7.2.2.2 PLGA Copolymers and Blenders
153(1)
7.2.3 Blend of Natural and Synthetic Materials
153(1)
7.3 Fabrication Techniques
154(3)
7.3.1 Self-Assembly and Phase Separation
154(2)
7.3.2 Electrospinning
156(1)
7.4 Clinical Application of Tissue Engineered Skin
157(5)
7.4.1 Skin Grafts
157(2)
7.4.2 Stem Cell Application in Skin Tissue Engineering
159(3)
7.5 Summary
162(1)
References
163(6)
8 Topical and Transdermal Delivery with Chemical Enhancers and Nanoparticles 169(32)
Chandrashekhar Voshavar
Praveen Kumar Vemula
Srujan Marepally
8.1 Introduction
169(1)
8.2 Anatomy of Skin/Skin Structure
170(1)
8.3 Skin Permeation Routes
171(1)
8.4 Chemical Enhancers (CEs) or Skin Penetration Enhancers
172(10)
8.4.1 Characteristics of an Ideal Chemical Enhancer
173(1)
8.4.2 Classification of Chemical Enhancers
173(9)
8.4.2.1 Water
173(2)
8.4.2.2 Alcohols, Fatty Alcohols, and Glycols
175(1)
8.4.2.3 Amides/Azones and Derivatives
175(1)
8.4.2.4 Esters
176(1)
8.4.2.5 Sulfoxides and Similar Chemicals
177(1)
8.4.2.6 Ureas
177(1)
8.4.2.7 Fatty Acids
178(1)
8.4.2.8 Essential Oils (EOs), Terpenes, and Terpenoids
179(1)
8.4.2.9 Surfactants
180(1)
8.4.2.10 Pyrrolidones and Derivatives
181(1)
8.4.2.11 Phospholipids
182(1)
8.4.2.12 Cyclodextrins
182(1)
8.5 Transdermal Delivery Using Nanoparticles
182(7)
8.5.1 Lipid Based Nanoparticles
184(1)
8.5.2 Polymer Based Nanoparticles
185(21)
8.5.2.1 Nanoparticles Based on Biodegradable Synthetic Polymers
186(1)
8.5.2.2 Nanoparticles Based on Biodegradable Synthetic Polymers
187(1)
8.5.2.3 Cationic Hybrid Polymeric Nanoparticles for Nucleic Acid Delivery
188(1)
8.5.2.4 Mechanism of Polymeric Nanoparticles Skin Permeation
189(1)
8.6 Peptides for Skin Permeation
189(1)
8.7 Peptide-Nucleic Acid Nanoconjugates
190(1)
8.8 Spherical Nucleic Acids
191(1)
8.9 Conclusion
191(1)
References
192(9)
9 Needle-Free Jet Injectors for Dermal and Transdermal Delivery of Actives 201(22)
Michele Schlich
Rosita Primavera
Francesco Lai
Chiara Sinico
Paolo Decuzzi
9.1 Introduction
201(2)
9.2 Components and Functioning Principle
203(1)
9.3 Modulating the Depth of Active Delivery
203(3)
9.4 Clinical and Preclinical Use of Needle-Free Jet Injectors for Systemic Drug Delivery
206(6)
9.4.1 Vaccines
206(2)
9.4.2 Insulin
208(2)
9.4.3 Growth Hormone
210(1)
9.4.4 Triptans
211(1)
9.4.5 Others
211(1)
9.5 Clinical and Preclinical Use of Needle-Free Jet Injectors for Local Drug Delivery
212(3)
9.5.1 Local Anesthetics
212(1)
9.5.2 Others
213(2)
9.6 Future Perspectives: Jet Injection for Nano-/Microparticles
215(1)
References
216(7)
10 Microneedles for Transdermal Drug Delivery 223(48)
Eman M. Migdadi
Ryan F. Donnelly
10.1 Introduction
223(1)
10.2 Microneedles
223(24)
10.2.1 MN Delivery Strategies
225(7)
10.2.1.1 Solid MNs
225(1)
10.2.1.2 Coated MNs
226(1)
10.2.1.3 Hollow MNs
227(1)
10.2.1.4 Dissolving MNs
228(2)
10.2.1.5 Hydrogel-Forming MNs
230(2)
10.2.2 MN Fabrication Methods
232(3)
10.2.3 MNs and Vaccine Delivery
235(2)
10.2.4 MNs for Patient Drug Monitoring
237(2)
10.2.5 MN Skin Insertion and Recovery Process
239(3)
10.2.6 Pain Perception and Skin Adverse Reactions of MN Application
242(1)
10.2.7 MN Products
243(2)
10.2.8 Combination of MNs with Other Techniques
245(1)
10.2.9 MN-Assisted Microparticle and Nanoparticle Permeation
245(2)
10.3 Microneedles in Management of Skin Disorders
247(2)
10.4 Future Considerations for MN Technology
249(1)
10.5 Conclusion
250(1)
References
251(20)
11 Ultrasound-Enhanced Transdermal Drug Delivery 271(20)
James Jing Kwan
Sunali Bhatnagar
11.1 Introduction
271(1)
11.2 Principles in Ultrasound
271(6)
11.2.1 Acoustic Waves
271(1)
11.2.2 Ultrasound Transducers and Instrumentation
272(2)
11.2.3 Propagation of Ultrasound
274(1)
11.2.4 Ultrasound Phenomena
274(2)
11.2.4.1 Mechanical Effects
274(1)
11.2.4.2 Thermal Effects
275(1)
11.2.4.3 Acoustic Cavitation
275(1)
11.2.5 Mechanisms of Action
276(1)
11.3 State of the Art in Ultrasound-Enhanced Transdermal Drug Delivery
277(7)
11.3.1 Modes of Delivery
277(2)
11.3.1.1 Ultrasound Pretreatment
277(1)
11.3.1.2 Co-application of Ultrasound and Drug
278(1)
11.3.2 Drug Dosage Medium
279(1)
11.3.3 Ultrasound-Assisted Drug Delivery: Drug Formulations and Safety Concerns
280(3)
11.3.3.1 Drug Formulations
280(2)
11.3.3.2 Safety Concerns
282(1)
11.3.4 Applications of Ultrasound-Enhanced Transdermal Delivery
283(8)
11.3.4.1 Immunization Using Ultrasound
283(1)
11.4 Conclusions
284(1)
References
284(7)
12 Iontophoresis Enhanced Transdermal Drug Delivery 291(18)
Xiayu Ning
Razina Z. Seeni
Chenjie Xu
12.1 Introduction
291(3)
12.1.1 Hyperhidrosis
292(1)
12.1.2 Delivery of Anesthetics for Pain Management
292(1)
12.1.3 Diagnosis of Cystic Fibrosis
292(1)
12.1.4 Glucose Monitoring
293(1)
12.1.5 Growing Interest
293(1)
12.2 Enhancing Transdermal Drug Delivery Using Iontophoresis Alone
294(6)
12.2.1 Iontophoretic Transdermal Delivery of Small Molecules
297(1)
12.2.2 lontophoretic Transdermal Delivery of Macromolecules
297(3)
12.3 Enhancing Transdermal Drug Delivery Using Combination of Iontophoresis and Other Approaches
300(4)
12.3.1 Iontophoresis with Chemical Enhancers
300(2)
12.3.2 Iontophoresis with Microneedles
302(1)
12.3.3 Iontophoresis and Nanoparticles
303(1)
12.4 Summary and Outlook
304(1)
References
304(5)
13 Ultrasound Imaging in Dermatology 309(32)
Jihun Kim
Sangyeon Youn
Jae Youn Hwang
13.1 Introduction
309(1)
13.2 The Physics of Ultrasound
309(4)
13.3 Ultrasonic Transducers
313(7)
13.3.1 Piezoelectric Materials
314(3)
13.3.1.1 PZT Ceramics
316(1)
13.3.1.2 Piezoelectric Single Crystals
316(1)
13.3.1.3 Relaxor-Based Single Crystals
316(1)
13.3.2 Matching Layer
317(1)
13.3.3 Backing Layer
317(1)
13.3.4 Single-Element Ultrasound Transducers
318(1)
13.3.5 Array Ultrasound Transducers
318(2)
13.4 Ultrasound Imaging Systems for Skin Diagnosis
320(10)
13.4.1 Ultrasound Imaging with Single-Element Ultrasound Transducers
321(5)
13.4.1.1 Scanning Methods for Ultrasound Imaging Based on Single-Element Ultrasound Transducers
322(1)
13.4.1.2 High-Frequency Ultrasound Imaging of the Skin Using Advanced Techniques
323(3)
13.4.2 Ultrasound Imaging with Array Ultrasound Transducers
326(4)
13.5 Applications of Ultrasound Imaging in Dermatology
330(4)
13.5.1 Ultrasound Imaging of Skin Cancer
330(2)
13.5.2 Ultrasound Imaging of Inflammatory and Infectious Skin Diseases
332(2)
13.5.3 Ultrasound Imaging for Other Skin Applications
334(1)
13.6 Conclusions
334(1)
Acknowledgments
335(1)
References
335(6)
14 Quantitative Magnetic Resonance Imaging of the Skin: In Vitro and In Vivo Applications 341(30)
Bernard Querleux
Genevieve Guillot
Jean-Christophe Ginefri
Marie Poirier-Quinot
Luc Darrasse
14.1 Introduction
341(1)
14.2 Clinical Magnetic Resonance Imaging of the Skin
342(9)
14.2.1 Hardware Challenges for Skin Imaging
342(6)
14.2.1.1 Introduction: Challenges for High-Resolution MR Imaging
342(3)
14.2.1.2 Optimized RF Coil Design for Skin Imaging
345(3)
14.2.2 State of the Art of Clinical MR Applications of Healthy and Diseased Skin
348(1)
14.2.3 MR Imaging of the Skin on the Face
349(1)
14.2.4 Water States in Skin by Quantitative MR Imaging
350(1)
14.3 Quantitative MR Imaging of the Skin In Vitro
351(8)
14.3.1 Opportunities with Preclinical MR Systems
351(1)
14.3.2 State of the Art of In Vitro MR Applications
352(2)
14.3.3 Quantification of Water States in Reconstructed Skin
354(19)
14.3.3.1 Introduction
354(1)
14.3.3.2 Basics of MT
354(1)
14.3.3.3 MR Protocol on Reconstructed Skin Samples
355(1)
14.3.3.4 Water States in Reconstructed Skin Samples
356(3)
14.4 Conclusion and Perspectives
359(1)
References
360(11)
15 High-Resolution Optical Coherence Tomography (OCT) for Skin Imaging 371(40)
Xiaojun Yu
Xianghong Wang
Lulu Wang
Razina Z. Seeni
Linbo Liu
15.1 Introduction
371(2)
15.2 HR-OCT Systems for Skin Imaging
373(9)
15.2.1 TD-OCT Systems
373(2)
15.2.1.1 Conventional TD-OCT
373(1)
15.2.1.2 High-Definition (HD)-OCT
374(1)
15.2.2 FD-OCT Systems
375(6)
15.2.2.1 Full-Field (FF)-OCT
375(1)
15.2.2.2 Micro-OCT (µOCT)
376(5)
15.2.3 PS-OCT
381(1)
15.3 Skin Imaging with HR-OCT
382(16)
15.3.1 Normal Skin Imaging Applications
382(5)
15.3.2 Skin Imaging in Clinical Practice
387(1)
15.3.3 Skin Imaging for Laboratory Research
388(26)
15.3.3.1 Characterization of In Situ Microneedle Real-Time Swelling in Skin
388(4)
15.3.3.2 OCT-Based Forensic Subsurface Fingerprint Detection
392(6)
15.4 Discussions
398(2)
15.5 Conclusion
400(1)
Acknowledgments
400(1)
References
400(11)
16 Photoacoustic Imaging of Skin 411(32)
Emelina Vienneau
Tri Vu
Junjie Yao
16.1 Introduction
411(1)
16.2 Photoacoustic Imaging Technology
412(2)
16.3 Applications to Skin Imaging
414(14)
16.3.1 Skin Cancers
414(4)
16.3.1.1 Melanoma Detection and Diagnosis
414(2)
16.3.1.2 Circulating Tumor Cell Detection
416(1)
16.3.1.3 Detection of Non-Melanoma Skin Cancers
417(1)
16.3.2 Tumor Environment Analysis
418(4)
16.3.2.1 Angiogenesis
418(2)
16.3.2.2 Oxygen Saturation
420(1)
16.3.2.3 Blood Flow and Metabolic Rate of Oxygen (MRO2)
421(1)
16.3.3 Detection of Noncancerous Skin Diseases
422(1)
16.3.3.1 Port Wine Stain
422(1)
16.3.3.2 Psoriasis
422(1)
16.3.3.3 Other Pigmented Lesions
422(1)
16.3.4 Burn Injury Assessment and Monitoring of Healing
423(2)
16.3.5 Monitoring Glucose Levels
425(1)
16.3.6 Other Molecular Applications in Skin Imaging
426(2)
16.4 Outlook
428(1)
References
429(14)
17 Laser Speckle Techniques for Flow Monitoring in Skin 443(22)
Renzhe Bi
Malini Olivo
Kijoon Lee
17.1 Introduction
443(1)
17.2 Laser Speckle Contrast Imaging
444(4)
17.2.1 Working Principle of Laser Speckle Contrast Imaging
444(2)
17.2.2 Applications of LSCI
446(2)
17.3 Diffuse Speckle Contrast Analysis
448(8)
17.3.1 Theory of Diffuse Speckle Contrast Analysis
449(2)
17.3.2 Deep Tissue Blood Flow and Cold-Induced Vasodilation
451(5)
17.4 Diffuse Speckle Tomography
456(3)
17.4.1 Depth Sensitivity of Flow Measurement
456(2)
17.4.2 Tomographic Flow Imaging
458(1)
17.5 The Future of Diffuse Speckle Analysis and Imaging
459(1)
References
460(5)
Index 465
Chenjie Xu, PhD, is Assistant Professor at the School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.

Xiaomeng Wang, PhD, is Associate Professor at Nanyang Technological University, Singapore, Principal Investigator at IMCB, Honorary Lecturer at UCL, and Adjunct Research Scientist at SERI.

Manojit Pramanik, PhD, is Associate Professor at the School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.