List of Contributors |
|
xix | |
Foreword |
|
xxvii | |
Preface |
|
xxix | |
|
|
1 | (18) |
|
|
|
|
1 | (3) |
|
1.1.1 Adding Defects into a Mechanical Theory |
|
|
1 | (1) |
|
1.1.2 Adding Microstructures to Finite Element Analysis (FEA) |
|
|
2 | (1) |
|
1.1.3 Comparing Modeling Results to Structure-Property Experimental Results |
|
|
2 | (1) |
|
1.1.4 Computational Materials |
|
|
2 | (1) |
|
1.1.5 Design Materials for Manufacturing (Process-Structure-Property Relationships) |
|
|
3 | (1) |
|
1.1.6 Simulation through the Process Chain |
|
|
3 | (1) |
|
|
4 | (6) |
|
|
4 | (1) |
|
|
5 | (3) |
|
|
8 | (1) |
|
1.2.4 ICME Cyberinfrastructure |
|
|
9 | (1) |
|
1.3 Industrial Perspective |
|
|
10 | (5) |
|
|
15 | (1) |
|
|
15 | (4) |
Section I Body-Centered Cubic Materials |
|
19 | (216) |
|
2 From Electrons to Atoms: Designing an Interatomic Potential for Fe-C Alloys |
|
|
21 | (28) |
|
|
|
|
|
|
|
|
|
21 | (2) |
|
|
23 | (2) |
|
|
24 | (1) |
|
|
24 | (1) |
|
2.3 Single-Element Potentials |
|
|
25 | (4) |
|
2.3.1 Energy versus Volume Curves |
|
|
25 | (1) |
|
2.3.1.1 Single-Element Material Properties |
|
|
29 | (1) |
|
2.4 Construction of Fe-C Alloy Potential |
|
|
29 | (6) |
|
2.5 Structural and Elastic Properties of Cementite |
|
|
35 | (3) |
|
2.5.1 Single-Crystal Elastic Properties |
|
|
36 | (1) |
|
2.5.2 Polycrystalline Elastic Properties |
|
|
37 | (1) |
|
|
37 | (1) |
|
2.5.4 Interstitial Energies |
|
|
38 | (1) |
|
2.6 Properties of Hypothetical Crystal Structures |
|
|
38 | (2) |
|
2.6.1 Energy versus Volume Curves for B1 and L12 Structures |
|
|
38 | (2) |
|
2.6.2 Elastic Constants for B1 and L12 Structures |
|
|
40 | (1) |
|
2.7 Thermal Properties of Cementite |
|
|
40 | (4) |
|
2.7.1 Thermal Stability of Cementite |
|
|
40 | (1) |
|
2.7.2 Melting Temperature Simulation |
|
|
40 | (1) |
|
2.7.2.1 Preparation of Two-Phase Simulation Box |
|
|
41 | (1) |
|
2.7.2.2 Two-Phase Simulation |
|
|
41 | (3) |
|
2.8 Summary and Conclusions |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (4) |
|
3 Phase-Field Crystal Modeling: Integrating Density Functional Theory, Molecular Dynamics, and Phase-Field Modeling |
|
|
49 | (22) |
|
|
|
3.1 Introduction to Phase-Field and Phase-Field Crystal Modeling |
|
|
49 | (4) |
|
3.2 Governing Equations of Phase-Field Crystal (PFC) Models Derived from Density Functional Theory (DFT) |
|
|
53 | (4) |
|
|
53 | (2) |
|
|
55 | (2) |
|
3.3 PFC Model Parameters by Molecular Dynamics Simulations |
|
|
57 | (2) |
|
3.4 Case Study: Solid-Liquid Interface Properties of Fe |
|
|
59 | (4) |
|
3.5 Case Study: Grain Boundary Free Energy of Fe at Its Melting Point |
|
|
63 | (2) |
|
3.6 Summary and Future Directions |
|
|
65 | (1) |
|
|
66 | (5) |
|
4 Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models |
|
|
71 | (36) |
|
|
|
Christopher R. Weinberger |
|
|
|
71 | (2) |
|
|
73 | (12) |
|
4.3 Crystal Plasticity Finite Element Model |
|
|
85 | (5) |
|
4.4 Continuum-Scale Model |
|
|
90 | (2) |
|
4.5 Engineering Scale Applications |
|
|
92 | (7) |
|
|
99 | (2) |
|
|
101 | (6) |
|
5 Heat Treatment and Fatigue of a Carburized and Quench Hardened Steel Part |
|
|
107 | (30) |
|
|
|
|
107 | (1) |
|
5.2 Modeling Phase Transformations and Mechanics of Steel Heat Treatment |
|
|
108 | (4) |
|
5.3 Data Required for Modeling Quench Hardening Process |
|
|
112 | (6) |
|
|
113 | (1) |
|
5.3.2 Mechanical Property Data |
|
|
114 | (1) |
|
5.3.3 Thermal Property Data |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
5.3.7 Immersion Quenching |
|
|
116 | (2) |
|
5.4 Heat Treatment Simulation of a Gear |
|
|
118 | (14) |
|
5.4.1 Description of Gear Geometry, FEA Model, and Problem Statement |
|
|
119 | (1) |
|
5.4.2 Carburization and Air Cooling Modeling |
|
|
120 | (2) |
|
5.4.3 Quench Hardening Process Modeling |
|
|
122 | (6) |
|
5.4.4 Comparison of Model and Experimental Results |
|
|
128 | (1) |
|
5.4.5 Tooth Bending Fatigue Data and Loading Model |
|
|
129 | (3) |
|
|
132 | (2) |
|
|
134 | (3) |
|
6 Steel Powder Metal Modeling |
|
|
137 | (62) |
|
|
|
|
|
|
|
|
137 | (1) |
|
6.2 Material: Steel Alloy |
|
|
137 | (2) |
|
6.3 ICME Modeling Methodology |
|
|
139 | (54) |
|
|
139 | (1) |
|
6.3.1.1 Macroscale Compaction Model |
|
|
139 | (1) |
|
6.3.1.2 Compaction Model Calibration |
|
|
146 | (1) |
|
|
146 | (1) |
|
6.3.1.4 Compaction Model Sensitivity and Uncertainty Analysis |
|
|
148 | (3) |
|
|
151 | (1) |
|
|
152 | (1) |
|
6.3.2.2 Theory and Simulations |
|
|
152 | (1) |
|
6.3.2.3 Sintering Structure-Property Relations |
|
|
155 | (1) |
|
6.3.2.4 Sintering Constitutive Modeling |
|
|
160 | (1) |
|
6.3.2.5 Sintering Model Implementation and Calibration |
|
|
163 | (1) |
|
6.3.2.6 Sintering Validation for an Automotive Main Bearing Cap |
|
|
165 | (1) |
|
6.3.3 Performance/Durability |
|
|
165 | (1) |
|
6.3.3.1 Monotonic Conditions |
|
|
167 | (1) |
|
6.3.3.2 Plasticity-Damage Structure-Property Relations |
|
|
167 | (1) |
|
6.3.3.3 Plasticity-Damage Model and Calibration |
|
|
168 | (1) |
|
6.3.3.4 Validation and Uncertainty |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
176 | (12) |
|
|
188 | (1) |
|
6.3.4.1 Design of Experiments (DOE) |
|
|
189 | (1) |
|
6.3.4.2 Results and Discussion |
|
|
191 | (2) |
|
|
193 | (1) |
|
|
194 | (5) |
|
7 Microstructure-Sensitive, History-Dependent Internal State Variable Plasticity-Damage Model for a Sequential Tubing Process |
|
|
199 | (36) |
|
|
|
|
|
|
|
|
|
|
|
199 | (3) |
|
7.2 Internal State Variable (ISV) Plasticity-Damage Model |
|
|
202 | (5) |
|
|
202 | (1) |
|
7.2.2 Constitutive Equations |
|
|
202 | (5) |
|
|
207 | (2) |
|
|
209 | (23) |
|
7.4.1 ISV Plasticity-Damage Model Calibration and Validation |
|
|
209 | (1) |
|
7.4.2 Simulations of the Forming Process (Step 1) |
|
|
210 | (3) |
|
7.4.3 Simulations of Sizing Process (Step 3) |
|
|
213 | (4) |
|
7.4.4 Simulations of First Annealing Process (Step 4) |
|
|
217 | (8) |
|
7.4.5 Simulations of Drawing Processes (Steps 5 and 6) |
|
|
225 | (5) |
|
7.4.6 Simulations of Second Annealing Process (Step 7) |
|
|
230 | (2) |
|
|
232 | (1) |
|
|
233 | (2) |
Section II Hexagonal Close Packed (HCP) Materials |
|
235 | (176) |
|
8 Electrons to Phases of Magnesium |
|
|
237 | (46) |
|
|
|
|
|
|
237 | (1) |
|
8.2 Criteria for the Design of Advanced Mg Alloys |
|
|
238 | (1) |
|
8.3 Fundamentals of the ICME Approach Designing the Advanced Mg Alloys |
|
|
238 | (10) |
|
8.3.1 Roadmap of ICME Approach |
|
|
238 | (1) |
|
8.3.2 Fundamentals of Computational Thermodynamics |
|
|
239 | (2) |
|
8.3.3 Electronic Structure Calculations of Materials Properties |
|
|
241 | (1) |
|
8.3.3.1 First-Principles Calculations for Finite Temperatures |
|
|
242 | (1) |
|
8.3.3.2 First-Principles Calculations of Solid Solution Phase |
|
|
244 | (1) |
|
8.3.3.3 First-Principles Calculations of Interfacial Energy |
|
|
245 | (1) |
|
8.3.3.4 Equation of States (EOSs) and Elastic Moduli |
|
|
245 | (1) |
|
8.3.3.5 Deformation Electron Density |
|
|
246 | (1) |
|
8.3.3.6 Diffusion Coefficient |
|
|
246 | (2) |
|
8.4 Data-Driven Mg Alloy Design - Application of ICME Approach |
|
|
248 | (24) |
|
8.4.1 Electronic Structure |
|
|
248 | (5) |
|
8.4.2 Thermodynamic Properties |
|
|
253 | (1) |
|
8.4.3 Phase Stability and Phase Diagrams |
|
|
253 | (1) |
|
8.4.3.1 Database Development |
|
|
253 | (1) |
|
8.4.3.2 Application of CALPHAD in Mg Alloy Design |
|
|
255 | (5) |
|
|
260 | (2) |
|
8.4.5 Mechanical Properties |
|
|
262 | (1) |
|
8.4.5.1 Elastic Constants |
|
|
262 | (1) |
|
8.4.5.2 Stacking Fault Energy and Ideal Strength Impacted by Alloying Elements |
|
|
265 | (1) |
|
8.4.5.3 Prismatic and Pyramidal Slips Activated by Lattice Distortion |
|
|
270 | (2) |
|
8.5 Outlook/Future Trends |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (10) |
|
9 Multiscale Statistical Study of Twinning in HCP Metals |
|
|
283 | (54) |
|
|
|
|
|
|
283 | (3) |
|
9.2 Crystal Plasticity Modeling of Slip and Twinning |
|
|
286 | (14) |
|
9.2.1 Crystal Plasticity Models |
|
|
288 | (2) |
|
9.2.2 Incorporating Twinning Into Crystal Plasticity Formulations |
|
|
290 | (4) |
|
9.2.3 Incorporating Hardening into Crystal Plasticity Formulations |
|
|
294 | (6) |
|
9.3 Introducing Lower Length Scale Statistics in Twin Modeling |
|
|
300 | (12) |
|
|
301 | (1) |
|
9.3.2 Mesoscale Statistical Characterization of Twinning |
|
|
302 | (3) |
|
9.3.3 Mesoscale Statistical Modeling of Twinning |
|
|
305 | (1) |
|
9.3.3.1 Stochastic Model for Twinning |
|
|
306 | (1) |
|
9.3.3.2 Stress Associated with Twin Nucleation |
|
|
308 | (1) |
|
9.3.3.3 Stress Associated with Twin Growth |
|
|
311 | (1) |
|
|
312 | (10) |
|
9.4.1 Comparison with Bulk Measurements |
|
|
314 | (4) |
|
9.4.2 Comparison with Statistical Data from EBSD |
|
|
318 | (4) |
|
|
322 | (8) |
|
9.5.1 Bending Simulations of Zr Bars |
|
|
324 | (6) |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
331 | (6) |
|
10 Cast Magnesium Alloy Corvette Engine Cradle |
|
|
337 | (40) |
|
|
|
|
|
|
|
|
|
|
|
337 | (1) |
|
|
338 | (2) |
|
10.3 Multiscale Continuum Microstructure-Property Internal State Variable (ISV) Model |
|
|
340 | (1) |
|
10.4 Electronic Structures |
|
|
340 | (1) |
|
10.5 Atomistic Simulations for Magnesium Using the Modified Embedded Atom Method (MEAM) Potential |
|
|
341 | (6) |
|
10.5.1 MEAM Calibration for Magnesium |
|
|
342 | (1) |
|
10.5.2 MEAM Validation for Magnesium |
|
|
342 | (1) |
|
10.5.3 Atomistic Simulations of Mg-Al in Monotonic Loadings |
|
|
343 | (4) |
|
10.6 Mesomechanics: Void Growth and Coalescence |
|
|
347 | (6) |
|
10.6.1 Mesomechanical Simulation Material Model for Cylindrical and Spherical Voids |
|
|
350 | (1) |
|
10.6.2 Mesomechanical Finite Element Cylindrical and Spherical Voids Results |
|
|
350 | (1) |
|
10.6.3 Discussion of Cylindrical and Spherical Voids |
|
|
351 | (2) |
|
10.7 Macroscale Modeling and Experiments |
|
|
353 | (13) |
|
10.7.1 Plasticity-Damage Internal State Variable (ISV) Model |
|
|
353 | (3) |
|
10.7.2 Macroscale Plasticity-Damage Internal State Variable (ISV) Model Calibration |
|
|
356 | (7) |
|
10.7.3 Macroscale Microstructure-Property ISV Model Validation Experiments on AM60B: Notch Specimens |
|
|
363 | (1) |
|
10.7.3.1 Finite Element Setup |
|
|
365 | (1) |
|
10.7.3.2 ISV Model Validation Simulations with Notch Test Data |
|
|
365 | (1) |
|
10.8 Structural-Scale Corvette Engine Cradle Analysis |
|
|
366 | (6) |
|
10.8.1 Cradle Finite Element Model |
|
|
366 | (1) |
|
10.8.2 Cradle Porosity Distribution Mapping |
|
|
367 | (2) |
|
10.8.3 Structural-Scale Modeling Results |
|
|
369 | (1) |
|
10.8.4 Corvette Engine Cradle Experiments |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
373 | (4) |
|
11 Using an Internal State Variable (ISV)-Multistage Fatigue (MSF) Sequential Analysis for the Design of a Cast AZ91 Magnesium Alloy Front-End Automotive Component |
|
|
377 | (34) |
|
|
|
|
|
|
|
|
|
|
377 | (2) |
|
11.2 Integrated Computational Materials Engineering and Design |
|
|
379 | (6) |
|
11.2.1 Processing-Structure-Property Relationships and Design |
|
|
380 | (2) |
|
11.2.2 Integrated Computational Materials Engineering (ICME) and Multiscale Modeling |
|
|
382 | (1) |
|
11.2.3 Overview of the Internal State Variable (ISV)-Multistage Fatigue (MSF) |
|
|
383 | (2) |
|
11.3 Mechanical and Microstructure Analysis of a Cast AZ91 Mg Alloy Shock Tower |
|
|
385 | (6) |
|
11.3.1 Shock Tower Microstructure Characterization |
|
|
386 | (1) |
|
11.3.2 Shock Tower Monotonic Mechanical Behavior |
|
|
387 | (2) |
|
11.3.3 Fatigue Behavior of an AZ91 Mg Alloy |
|
|
389 | (1) |
|
11.3.3.1 Strain-life Fatigue Behavior for an AZ91 Mg Alloy |
|
|
389 | (1) |
|
11.3.3.2 Fractographic Analysis |
|
|
391 | (1) |
|
11.4 A Microstructure-Sensitive Internal State Variable (ISV) Plasticity-Damage Model |
|
|
391 | (2) |
|
11.5 Microstructure-Sensitive Multistage Fatigue (MSF) Model for an AZ91 Mg Alloy |
|
|
393 | (5) |
|
11.5.1 The Multistage Fatigue (MSF) Model |
|
|
394 | (1) |
|
11.5.1.1 Incubation Regime |
|
|
394 | (1) |
|
11.5.1.2 Microstructurally Small Crack (MSC) Growth Regime |
|
|
395 | (1) |
|
11.5.2 Calibration of the MSF Model for the AZ91 Alloy |
|
|
396 | (2) |
|
11.6 Internal State Variable (ISV)-Multistage Fatigue (MSF) Model Finite Element Simulations |
|
|
398 | (8) |
|
11.6.1 Finite Element Model |
|
|
398 | (1) |
|
11.6.2 Shock Tower Distribution Mapping of Microstructural Properties |
|
|
399 | (2) |
|
11.6.3 Finite Element Simulations |
|
|
401 | (1) |
|
11.6.3.1 Case 1 Homogeneous Material State Calculation (FEA #1) |
|
|
401 | (1) |
|
11.6.3.2 Case 2 Heterogeneous Porosity Calculation (FEA #5) |
|
|
401 | (1) |
|
11.6.3.3 Case 3 Heterogeneous Pore Size Calculation (FEA #4) |
|
|
401 | (1) |
|
11.6.3.4 Case 4 Heterogeneous Material State Calculation (FEA #2) |
|
|
402 | (1) |
|
11.6.4 Fatigue Tests and Finite Element Results |
|
|
402 | (4) |
|
|
406 | (1) |
|
|
407 | (4) |
Section III Face-Centered Cubic (FCC) Materials |
|
411 | (102) |
|
12 Electronic Structures and Materials Properties Calculations of Ni and Ni-Based Superalloys |
|
|
413 | (34) |
|
|
|
|
|
413 | (1) |
|
12.2 Designing the Next Generation of Ni-Base Superalloys Using the ICME Approach |
|
|
414 | (2) |
|
12.3 Density Functional Theory as the Basis for an ICME Approach to Ni-Base Superalloy Development |
|
|
416 | (5) |
|
12.3.1 Fundamental Concepts of Density Functional Theory |
|
|
416 | (3) |
|
12.3.2 Fundamentals of Thermodynamic Modeling (the CALPHAD Approach) |
|
|
419 | (2) |
|
12.4 Theoretical Background and Computational Procedure |
|
|
421 | (6) |
|
12.4.1 First-Principles Calculation of Elastic Constants |
|
|
421 | (1) |
|
12.4.2 First-Principles Calculations of Stacking Fault Energy |
|
|
422 | (1) |
|
12.4.3 First-Principles Calculations of Dilute Impurity Diffusion Coefficients |
|
|
423 | (3) |
|
12.4.4 Finite-Temperature First-Principles Calculations |
|
|
426 | (1) |
|
12.4.5 Computational Details as Implemented in VASP |
|
|
427 | (1) |
|
12.5 Ni-Base Superalloy Design using the ICME Approach |
|
|
427 | (13) |
|
12.5.1 Finite Temperature Thermodynamics |
|
|
427 | (1) |
|
12.5.1.1 Application to CALPHAD Modeling |
|
|
428 | (2) |
|
12.5.2 Mechanical Properties |
|
|
430 | (1) |
|
12.5.2.1 Elastic Constants Calculations |
|
|
430 | (1) |
|
12.5.2.2 Stacking Fault Energy Calculations |
|
|
431 | (2) |
|
12.5.3 Diffusion Coefficients |
|
|
433 | (1) |
|
12.5.4 Designing Ni-Base Superalloy Systems Using the ICME Approach |
|
|
434 | (1) |
|
12.5.4.1 CALPHAD Modeling used for Ni-Base Superalloy Design |
|
|
434 | (1) |
|
12.5.4.2 Using a Mechanistic Model to Predict a Relative Creep Rates in Ni-X Alloys |
|
|
438 | (2) |
|
12.6 Conclusions and Future Directions |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (6) |
|
13 Nickel Powder Metal Modeling Illustrating Atomistic-Continuum Friction Laws |
|
|
447 | (18) |
|
|
|
|
447 | (1) |
|
13.2 ICME Modeling Methodology |
|
|
447 | (5) |
|
|
447 | (1) |
|
13.2.2 Macroscale Plasticity Model for Powder Metals |
|
|
448 | (4) |
|
|
452 | (9) |
|
13.3.1 Simulation Method and Setup |
|
|
452 | (3) |
|
13.3.2 Simulation Results and Discussion |
|
|
455 | (6) |
|
|
461 | (1) |
|
|
462 | (3) |
|
14 Multiscale Modeling of Pure Nickel |
|
|
465 | (48) |
|
|
|
|
|
|
|
|
|
|
|
|
465 | (3) |
|
14.2 Bridge 1: Electronics to Atomistics and Bridge 4: Electronics to the Continuum |
|
|
468 | (10) |
|
14.2.1 Electronics Principles Calibration Using Density Functional Theory (DFT) |
|
|
470 | (1) |
|
14.2.2 Density Functional Theory Background |
|
|
470 | (2) |
|
14.2.3 Upscaling Information from DFT |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
14.2.3.3 Generalized Stacking Fault Energy (GSFE) |
|
|
473 | (1) |
|
14.2.3.4 Vacancy Formation Energy |
|
|
474 | (1) |
|
14.2.3.5 Surface Formation Energy |
|
|
474 | (1) |
|
14.2.4 MEAM Background and Theory |
|
|
474 | (2) |
|
14.2.5 Validation of Atomistic Results Using the MEAM Potential |
|
|
476 | (2) |
|
14.3 Bridge 2: Atomistics to Dislocation Dynamics and Bridge 5: Atomistics to the Continuum |
|
|
478 | (5) |
|
14.3.1 Upscaling MEAM/LAMMPS to Determine the Dislocation Mobility |
|
|
480 | (1) |
|
14.3.2 MEAM/LAMMPS Validation and Uncertainty |
|
|
481 | (2) |
|
14.4 Bridge 3: Dislocation Dynamics to Crystal Plasticity and Bridge 6: Dislocation Dynamics to the Continuum |
|
|
483 | (10) |
|
14.4.1 Dislocation Dynamics Background |
|
|
483 | (4) |
|
14.4.2 Crystal Plasticity Background |
|
|
487 | (2) |
|
14.4.3 Crystal Plasticity Voce Hardening Equation Calibration |
|
|
489 | (1) |
|
14.4.4 Crystal Plasticity Finite Element Method to Determine the Polycrystalline Stress-strain Behavior |
|
|
490 | (3) |
|
14.5 Bridge 7: Crystal Plasticity to the Continuum |
|
|
493 | (7) |
|
14.5.1 Macroscale Constitutive Model Calibration |
|
|
499 | (1) |
|
14.6 Bridge 8: Macroscale Calibration to Structural Scale Simulations |
|
|
500 | (5) |
|
14.6.1 Validation of Multiscale Methodology |
|
|
503 | (1) |
|
14.6.2 Experimental and Simulation Results |
|
|
504 | (1) |
|
|
505 | (1) |
|
|
506 | (1) |
|
|
506 | (7) |
Section IV Design of Materials and Structures |
|
513 | (60) |
|
15 Predicting Constitutive Equations for Materials Design: A Conceptual Exposition |
|
|
515 | (24) |
|
|
|
|
|
|
|
515 | (1) |
|
|
516 | (2) |
|
15.3 Critical Review of the Literature |
|
|
518 | (4) |
|
15.3.1 Constitutive Equation (CEQ) |
|
|
518 | (1) |
|
15.3.2 Various Types of Power-Law Flow Rules in CP Algorithm |
|
|
519 | (1) |
|
15.3.3 Comparison of FEM versus VFM |
|
|
520 | (1) |
|
15.3.4 AI-based KDD Process |
|
|
521 | (1) |
|
15.4 Crystal Plasticity-Based Virtual Experiment Model |
|
|
522 | (2) |
|
15.4.1 Description of CPVEM |
|
|
522 | (1) |
|
15.4.2 Various Types of Power-Law Flow Rules |
|
|
523 | (1) |
|
15.5 Hierarchical Strategy for Developing a Constitutive EQuation (CEQ) Expansion Model |
|
|
524 | (7) |
|
15.5.1 Computational Model for Developing a CEQ Expansion Model |
|
|
524 | (1) |
|
15.5.1.1 CPVEM for Predicting CEQ Patterns |
|
|
525 | (1) |
|
15.5.1.2 Identifying CEQ Patterns for TAV |
|
|
526 | (1) |
|
15.5.1.3 Virtual Fields Method (VFM) Model for Predicting Material Properties for New Ti-Al-X (TAX) Materials |
|
|
527 | (1) |
|
15.5.2 Big Data Control Based on Ontology Integration |
|
|
528 | (3) |
|
|
531 | (2) |
|
|
533 | (1) |
|
|
534 | (1) |
|
|
534 | (5) |
|
16 A Computational Method for the Design of Materials Accounting for the Process-Structure-Property-Performance (PSPP) Relationship |
|
|
539 | (34) |
|
|
|
|
|
|
539 | (1) |
|
|
540 | (2) |
|
16.3 Integrated Multiscale Robust Design (IMRD) |
|
|
542 | (2) |
|
|
544 | (5) |
|
16.4.1 Roll Pass Sequence and Design Parameters |
|
|
545 | (3) |
|
16.4.2 Flow Stress Prediction Model |
|
|
548 | (1) |
|
|
549 | (1) |
|
16.5 Microstructure Evolution Model |
|
|
549 | (6) |
|
|
550 | (1) |
|
16.5.2 Austenite Grain Size (AGS) Prediction |
|
|
551 | (3) |
|
16.5.3 Ferrite Grain Size (FGS) Prediction |
|
|
554 | (1) |
|
16.6 Exploring the Feasible Solution Space |
|
|
555 | (8) |
|
16.6.1 Developing Roll Pass Design and The Analysis and FE Models |
|
|
556 | (1) |
|
16.6.2 Developing Modules and Their Corresponding Model Descriptions |
|
|
557 | (1) |
|
16.6.2.1 Module 1. AGS Prediction Model (f1) |
|
|
557 | (1) |
|
16.6.2.2 Module 2. FGS Prediction Model (f2) |
|
|
557 | (1) |
|
16.6.2.3 Module 3. Structure-Property Correlation |
|
|
557 | (1) |
|
16.6.2.4 Module 4. Property-Performance Correlation |
|
|
558 | (1) |
|
16.6.3 IMRD Step 1 in Figure 16.8: Deductive Exploration |
|
|
559 | (1) |
|
16.6.4 IMRD Step 2 in Figure 16.8: Inductive Exploration |
|
|
560 | (2) |
|
16.6.5 IMRD Step 3 in Figure 16.8: Trade-offs among Competing Goals |
|
|
562 | (1) |
|
16.6.6 Exploration of Solution Space |
|
|
562 | (1) |
|
16.7 Results and Discussion |
|
|
563 | (5) |
|
|
568 | (1) |
|
|
569 | (1) |
|
|
569 | (2) |
|
|
571 | (2) |
Section V Education |
|
573 | (74) |
|
17 An Engineering Virtual Organization for CyberDesign (EVOCD): A Cyberinfrastructure for Integrated Computational Materials Engineering (ICME) |
|
|
575 | (30) |
|
|
|
|
|
575 | (3) |
|
17.2 Engineering Virtual Organization for CyberDesign |
|
|
578 | (2) |
|
17.3 Functionality of EVOCD |
|
|
580 | (15) |
|
17.3.1 Knowledge Management: Wiki |
|
|
580 | (2) |
|
17.3.2 Repository of Codes |
|
|
582 | (1) |
|
17.3.3 Repository of Data |
|
|
583 | (2) |
|
17.3.4 Online Model Calibration Tools |
|
|
585 | (1) |
|
|
588 | (1) |
|
17.3.4.2 MultiState Fatigue (MSF) |
|
|
591 | (1) |
|
17.3.4.3 Modified Embedded Atom Method (MEAM) Parameter Calibration (MPC) |
|
|
593 | (2) |
|
17.4 Protection of Intellectual Property |
|
|
595 | (3) |
|
17.5 Cyberinfrastructure for EVOCD |
|
|
598 | (3) |
|
|
598 | (2) |
|
|
600 | (1) |
|
17.5.3 Service Integration |
|
|
600 | (1) |
|
|
601 | (1) |
|
|
601 | (4) |
|
18 Integrated Computational Materials Engineering (ICME) Pedagogy |
|
|
605 | (28) |
|
|
|
|
|
605 | (3) |
|
|
608 | (2) |
|
|
610 | (13) |
|
|
611 | (2) |
|
18.3.2 Presentation and Team Formation |
|
|
613 | (1) |
|
18.3.3 ICME Cyberinfrastructure and Basic Skills |
|
|
613 | (1) |
|
18.3.4 Bridging Length Scales |
|
|
614 | (1) |
|
|
614 | (1) |
|
18.3.4.2 Atomistic Methods |
|
|
615 | (1) |
|
18.3.4.3 Dislocation Dynamics Methods |
|
|
617 | (1) |
|
18.3.4.4 Crystal Plasticity |
|
|
618 | (1) |
|
18.3.4.5 Macroscale Continuum Modeling |
|
|
619 | (2) |
|
18.3.5 ICME Wiki Contributions |
|
|
621 | (1) |
|
18.3.6 Grading and Evaluation |
|
|
622 | (1) |
|
|
623 | (5) |
|
18.5 Benefits or Relevance of the Learning Methodology |
|
|
628 | (1) |
|
18.6 Conclusions and Future Directions |
|
|
629 | (1) |
|
|
630 | (1) |
|
|
630 | (3) |
|
|
633 | (14) |
|
|
|
633 | (1) |
|
19.2 Chapter 1: ICME Definition: Takeaway Point |
|
|
633 | (1) |
|
19.3 Chapter 2: Takeaway Point |
|
|
634 | (1) |
|
19.4 Chapter 3: Takeaway Point |
|
|
634 | (1) |
|
19.5 Chapter 4: Takeaway Point |
|
|
634 | (1) |
|
19.6 Chapter 5: Takeaway Point |
|
|
634 | (1) |
|
19.7 Chapter 6: Takeaway Point |
|
|
634 | (1) |
|
19.8 Chapter 7: Takeaway Point |
|
|
634 | (1) |
|
19.9 Chapter 8: Takeaway Point |
|
|
635 | (1) |
|
19.10 Chapter 9: Takeaway Point |
|
|
635 | (1) |
|
19.11 Chapter 10: Takeaway Point |
|
|
635 | (1) |
|
19.12 Chapter 11: Takeaway Point |
|
|
635 | (1) |
|
19.13 Chapter 12: Takeaway Point |
|
|
635 | (1) |
|
19.14 Chapter 13: Takeaway Point |
|
|
635 | (1) |
|
19.15 Chapter 14: Takeaway Point |
|
|
636 | (1) |
|
19.16 Chapter 15: Takeaway Point |
|
|
636 | (1) |
|
19.17 Chapter 16: Takeaway Point |
|
|
636 | (1) |
|
19.18 Chapter 17: Takeaway Point |
|
|
636 | (1) |
|
19.19 Chapter 18: Takeaway Point |
|
|
636 | (1) |
|
|
637 | (7) |
|
19.20.1 ICME Future: Metals |
|
|
637 | (1) |
|
19.20.2 ICME Future: Non-Metals |
|
|
637 | (1) |
|
|
637 | (1) |
|
|
639 | (1) |
|
|
641 | (1) |
|
19.20.2.4 Biological Materials |
|
|
641 | (1) |
|
19.20.2.5 Earth Materials |
|
|
643 | (1) |
|
19.20.2.6 Space Materials |
|
|
644 | (1) |
|
|
644 | (1) |
|
|
645 | (2) |
Index |
|
647 | |