Preface |
|
xvii | |
Acknowledgment |
|
xxi | |
Authors |
|
xxiii | |
|
|
1 | (28) |
|
|
3 | (3) |
|
1.2 Kinematic Control of a Redundant Manipulator |
|
|
6 | (5) |
|
1.2.1 Redundancy Resolution using Null Space of the Pseudo-inverse |
|
|
8 | (1) |
|
1.2.2 Extended Jacobian Method |
|
|
8 | (1) |
|
1.2.3 Optimization Based Redundancy Resolution |
|
|
9 | (1) |
|
1.2.4 Redundancy Resolution with Global Optimization |
|
|
9 | (1) |
|
1.2.5 Neural Network Based Methods |
|
|
10 | (1) |
|
|
11 | (2) |
|
1.3.1 Image Based Visual Servoing (IBVS) |
|
|
12 | (1) |
|
1.3.2 Position Based Visual Servoing (PBVS) |
|
|
12 | (1) |
|
1.3.3 2-1/2-D Visual Servoing |
|
|
13 | (1) |
|
1.4 Visual Control of a Redundant Manipulator: Research Issues |
|
|
13 | (3) |
|
1.5 Learning by Demonstration |
|
|
16 | (5) |
|
1.5.1 DS-Based Motion Learning |
|
|
19 | (2) |
|
1.6 Stability of Nonlinear Systems |
|
|
21 | (1) |
|
1.7 Optimization Techniques |
|
|
22 | (5) |
|
|
24 | (1) |
|
1.7.2 Expectation Maximization for Gaussian Mixture Model |
|
|
25 | (2) |
|
1.8 Composition of the Book |
|
|
27 | (2) |
I Manipulators |
|
29 | (454) |
|
2 Kinematic and Dynamic Models of Robot Manipulators |
|
|
31 | (24) |
|
2.1 PowerCube Manipulator |
|
|
31 | (1) |
|
2.2 Kinematic Configuration of the Manipulator |
|
|
32 | (3) |
|
2.3 Estimating the Vision Space Motion with Camera Model |
|
|
35 | (5) |
|
2.3.1 Transformation from Cartesian Space to Vision Space |
|
|
36 | (2) |
|
|
38 | (1) |
|
2.3.3 Computation of Image Feature Velocity in the Vision Space |
|
|
39 | (1) |
|
2.4 Learning-Based Controller Architecture |
|
|
40 | (1) |
|
2.5 Universal Robot (UR 10) |
|
|
41 | (4) |
|
|
41 | (2) |
|
|
41 | (2) |
|
|
43 | (1) |
|
2.5.1.3 Perception Apparatus |
|
|
43 | (1) |
|
|
43 | (2) |
|
2.6 Barrett Warn Manipulator |
|
|
45 | (9) |
|
2.6.1 Overview of the System |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (2) |
|
2.6.4 System Description and Modeling |
|
|
49 | (4) |
|
2.6.5 State Space Representation |
|
|
53 | (1) |
|
|
54 | (1) |
|
3 Hand-eye Coordination of a Robotic Arm using KSOM Network |
|
|
55 | (58) |
|
3.1 Kohonen Self Organizing Map |
|
|
56 | (4) |
|
3.1.1 Competitive Process |
|
|
57 | (1) |
|
3.1.2 Cooperative Process |
|
|
57 | (1) |
|
|
58 | (2) |
|
3.2 System Identification using KSOM |
|
|
60 | (6) |
|
3.3 Introduction to Learning-Based Inverse Kinematic Control |
|
|
66 | (23) |
|
|
68 | (1) |
|
3.3.2 The Learning Problem |
|
|
69 | (1) |
|
|
69 | (1) |
|
3.3.4 The Formulation of Cost Function |
|
|
69 | (1) |
|
|
70 | (19) |
|
3.4 Visual Motor Control of a Redundant Manipulator using KSOM Network |
|
|
89 | (5) |
|
|
92 | (2) |
|
3.5 KSOM with Sub-Clustering in Joint Angle Space |
|
|
94 | (6) |
|
3.5.1 Network Architecture |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
3.5.4 Redundancy Resolution |
|
|
98 | (1) |
|
3.5.5 Tracking a Continuous Trajectory |
|
|
99 | (1) |
|
3.6 Simulation and Results |
|
|
100 | (11) |
|
3.6.1 Network Architecture and Workspace Dimensions |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
101 | (7) |
|
3.6.3.1 Reaching Isolated Target Positions in the Workspace |
|
|
103 | (2) |
|
3.6.3.2 Tracking a Straight Line Trajectory |
|
|
105 | (2) |
|
3.6.3.3 Tracking an Elliptical Trajectory |
|
|
107 | (1) |
|
3.6.4 Real-Time Experiment |
|
|
108 | (5) |
|
3.6.4.1 Redundant Solutions |
|
|
109 | (1) |
|
3.6.4.2 Tracking a Circular and a Straight Line Trajectory |
|
|
110 | (1) |
|
3.6.4.3 Multi-Step Movement |
|
|
111 | (1) |
|
|
111 | (2) |
|
4 Model-based Visual Servoing of a 7 DOF Manipulator |
|
|
113 | (32) |
|
|
113 | (1) |
|
4.2 Kinematic Control of a Manipulator |
|
|
113 | (2) |
|
4.2.1 Kinematic Control of Redundant Manipulator |
|
|
114 | (1) |
|
|
115 | (6) |
|
4.3.1 Estimating the Vision Space Motion with Camera Model |
|
|
116 | (1) |
|
4.3.2 Transformation from Cartesian Space to Vision Space |
|
|
117 | (2) |
|
|
119 | (1) |
|
4.3.4 Computation of Image Feature Velocity in the Vision Space |
|
|
120 | (1) |
|
4.4 Kinematic Control of a Manipulator Directly from Vision Space |
|
|
121 | (1) |
|
|
122 | (4) |
|
4.6 Image Moment Velocity |
|
|
126 | (2) |
|
4.7 A Pinhole Camera Projection |
|
|
128 | (4) |
|
4.8 Image Moment Interaction Matrix |
|
|
132 | (7) |
|
4.9 Experimental Results using a 7 DOF Manipulator |
|
|
139 | (2) |
|
|
141 | (4) |
|
5 Learning-Based Visual Servoing |
|
|
145 | (60) |
|
|
145 | (3) |
|
5.2 Kinematic Control using KSOM |
|
|
148 | (3) |
|
|
149 | (1) |
|
5.2.2 KSOM: Weight Update |
|
|
149 | (1) |
|
5.2.3 Comments on Existing KSOM Based Kinematic Control Schemes |
|
|
150 | (1) |
|
|
151 | (1) |
|
5.4 Analysis of Solution Learned Using KSOM |
|
|
151 | (5) |
|
5.4.1 KSOM: An Estimate of Inverse Jacobian |
|
|
152 | (1) |
|
5.4.2 Empirical Verification |
|
|
152 | (4) |
|
5.4.2.1 Inverse Jacobian Evolution in Learning Phase |
|
|
153 | (1) |
|
5.4.2.2 Testing Phase: Inverse Jacobian Estimation at each Operating Zone |
|
|
153 | (1) |
|
|
154 | (2) |
|
5.5 KSOM in Closed Loop Visual Servoing |
|
|
156 | (3) |
|
|
157 | (2) |
|
5.6 Redundancy Resolution |
|
|
159 | (1) |
|
|
160 | (12) |
|
5.7.1 Learning Inverse Kinematic Relationship using KSOM |
|
|
160 | (1) |
|
|
161 | (3) |
|
5.7.3 Redundancy Resolution |
|
|
164 | (11) |
|
5.7.3.1 Tracking a Straight Line |
|
|
165 | (3) |
|
5.7.3.2 Tracking an Elliptical Trajectory |
|
|
168 | (4) |
|
|
172 | (1) |
|
5.9 Reinforcement Learning-Based Optimal Redundancy Resolution Directly from the Vision Space |
|
|
172 | (1) |
|
|
172 | (2) |
|
5.11 Redundancy Resolution Problem from the Vision Space |
|
|
174 | (1) |
|
5.12 SNAC Based Optimal Redundancy Resolution from Vision Space |
|
|
175 | (4) |
|
5.12.1 Selection of Cost Function |
|
|
176 | (1) |
|
5.12.2 Control Challenges |
|
|
177 | (2) |
|
5.13 T-S Fuzzy Model-Based Critic Neural Network for Redundancy Resolution from Vision Space |
|
|
179 | (6) |
|
5.13.1 Fuzzy Critic Model |
|
|
179 | (2) |
|
|
181 | (1) |
|
5.13.3 Selection of Fuzzy Zones |
|
|
182 | (1) |
|
5.13.4 Initialization of the Fuzzy Network Control |
|
|
183 | (2) |
|
|
184 | (1) |
|
5.14 KSOM Based Critic Network for Redundancy Resolution from Vision Space |
|
|
185 | (5) |
|
|
185 | (3) |
|
5.14.2 KSOM: Weight Update |
|
|
188 | (1) |
|
5.14.3 Initialization of KSOM Network Control |
|
|
188 | (2) |
|
|
190 | (5) |
|
|
190 | (1) |
|
5.15.2 Kohonen's Self-organizing Map |
|
|
191 | (4) |
|
5.16 Real-Time Experiment |
|
|
195 | (7) |
|
5.16.1 Tracking Elliptical Trajectory |
|
|
196 | (5) |
|
|
196 | (3) |
|
|
199 | (2) |
|
5.16.2 Grasping a Ball with Hand-manipulator Setup |
|
|
201 | (1) |
|
|
202 | (3) |
|
6 Visual Servoing using an Adaptive Distributed Takagi-Sugeno (T-S) Fuzzy Model |
|
|
205 | (24) |
|
|
206 | (2) |
|
6.2 Adaptive Distributed T-S Fuzzy PD Controller |
|
|
208 | (8) |
|
6.2.1 Offline Learning Algorithm |
|
|
209 | (3) |
|
6.2.2 Online Adaptation Algorithm |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (9) |
|
6.3.1 Visual Servoing for a Static Target |
|
|
220 | (2) |
|
6.3.2 Compensation of Model Uncertainties |
|
|
222 | (1) |
|
6.3.3 Visual Servoing for a Moving Target |
|
|
223 | (2) |
|
6.4 Computational Complexity |
|
|
225 | (1) |
|
|
225 | (4) |
|
7 Kinematic Control using Single Network Adaptive Critic |
|
|
229 | (54) |
|
|
229 | (12) |
|
7.1.1 Discrete-Time Optimal Control Problem |
|
|
230 | (1) |
|
7.1.2 Adaptive Critic Based Control |
|
|
231 | (3) |
|
7.1.2.1 Training of Action and Critic Network |
|
|
232 | (2) |
|
7.1.3 Single Network Adaptive Critic (DT-SNAC) |
|
|
234 | (1) |
|
7.1.4 Choice of Critic Network Model |
|
|
235 | (6) |
|
7.1.4.1 Costate Vector Modeling with MLN Critic Network |
|
|
235 | (1) |
|
7.1.4.2 Costate Vector Modeling with T-S Fuzzy Model-Based Critic Network |
|
|
236 | (5) |
|
7.2 Adaptive Critic Based Optimal Controller Design for Continuous-time Systems |
|
|
241 | (16) |
|
7.2.1 Continuous-time Single Network Adaptive Critic (CT-SNAG) |
|
|
242 | (1) |
|
7.2.2 Critic Network: Weight Update Law |
|
|
243 | (2) |
|
7.2.3 Choice of Critic Network |
|
|
245 | (14) |
|
7.2.3.1 Critic Network using MLN |
|
|
245 | (1) |
|
7.2.3.2 T-S Fuzzy Model-Based Critic Network with Cluster of Local Quadratic Cost Functions |
|
|
246 | (2) |
|
|
248 | (9) |
|
7.3 Discrete-Time Input Affine System Representation of Forward Kinematics |
|
|
257 | (2) |
|
7.4 Modeling the Primary and Additional Tasks as an Integral Cost Function |
|
|
259 | (2) |
|
7.4.1 Quadratic Cost Minimization (Global Minimum Norm Motion) |
|
|
260 | (1) |
|
7.4.2 Joint Limit Avoidance |
|
|
260 | (1) |
|
7.5 Single Network Adaptive Critic Based Optimal Redundancy Resolution |
|
|
261 | (3) |
|
7.5.1 T-S Fuzzy Model-Based Critic Network for Closed Loop Positioning Task |
|
|
262 | (1) |
|
|
263 | (1) |
|
7.6 Computational Complexity |
|
|
264 | (1) |
|
|
265 | (11) |
|
7.7.1 Global Minimum Norm Motion |
|
|
266 | (6) |
|
7.7.2 Joint Limit Avoidance |
|
|
272 | (4) |
|
|
276 | (4) |
|
7.8.1 Global Minimum Norm Motion |
|
|
276 | (2) |
|
7.8.2 Joint Limit Avoidance |
|
|
278 | (2) |
|
|
280 | (3) |
|
8 Dynamic Control using Single Network Adaptive Critic |
|
|
283 | (36) |
|
|
283 | (1) |
|
8.2 Optimal Control Problem of Continuous Time Nonlinear System |
|
|
284 | (7) |
|
8.2.1 Linear Quadratic Regulator |
|
|
285 | (2) |
|
8.2.2 Hamilton-Jacobi-Bellman Equation |
|
|
287 | (1) |
|
8.2.3 Optimal Control Law for Input Affine System |
|
|
288 | (1) |
|
8.2.4 Adaptive Critic Concept |
|
|
289 | (2) |
|
8.3 Policy Iteration and SNAC for Unknown Continuous Time Nonlinear Systems |
|
|
291 | (26) |
|
8.3.1 Policy Iteration Scheme |
|
|
291 | (1) |
|
8.3.2 Optimal Control Problem of an Unknown Dynamic |
|
|
292 | (3) |
|
8.3.3 Model Representation and Learning Scheme |
|
|
295 | (1) |
|
8.3.3.1 TSK Fuzzy Representation of Nonlinear Dynamics |
|
|
295 | (1) |
|
8.3.3.2 Learning Scheme for the TSK Fuzzy Model |
|
|
295 | (1) |
|
8.3.4 Critic Design and Policy Update |
|
|
296 | (5) |
|
8.3.4.1 Construction of Initial Critic Network using Lyapunov Based LMI |
|
|
296 | (1) |
|
8.3.4.2 Lyapunov Function |
|
|
297 | (1) |
|
8.3.4.3 Conditions for Stabilization |
|
|
298 | (3) |
|
8.3.4.4 Design of Fitness Function |
|
|
301 | (1) |
|
8.3.5 Learning Near-Optimal Controller |
|
|
301 | (6) |
|
8.3.5.1 Update of Critic Network |
|
|
304 | (1) |
|
8.3.5.2 Fitness Function for PI Based Training |
|
|
305 | (2) |
|
|
307 | (13) |
|
|
307 | (3) |
|
8.3.6.2 Example using Real Robot |
|
|
310 | (7) |
|
|
317 | (2) |
|
|
319 | (66) |
|
|
319 | (1) |
|
9.2 Dynamic Movement Primitives |
|
|
320 | (4) |
|
9.2.1 Mathematical Formulations |
|
|
321 | (2) |
|
9.2.1.1 Choice of Mean and Variance |
|
|
322 | (1) |
|
9.2.1.2 Spatial and Temporal Scaling |
|
|
322 | (1) |
|
|
323 | (1) |
|
9.3 Motion Encoding using Gaussian Mixture Regression |
|
|
324 | (3) |
|
9.3.1 SED: Stable Estimator of Dynamical Systems |
|
|
326 | (1) |
|
9.3.1.1 Learning Model Parameters |
|
|
326 | (1) |
|
9.3.1.2 Log-likelihood Cost |
|
|
327 | (1) |
|
9.4 FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives |
|
|
327 | (27) |
|
9.4.1 Motion Modeling with C-FuzzStaMP |
|
|
328 | (7) |
|
9.4.1.1 Fuzzy Lyapunov Function |
|
|
329 | (2) |
|
9.4.1.2 Learning Fuzzy Controller Gains |
|
|
331 | (2) |
|
9.4.1.3 Design of Fitness Function |
|
|
333 | (1) |
|
|
333 | (2) |
|
9.4.2 Motion Modeling with R-FuzzStaMP |
|
|
335 | (11) |
|
9.4.2.1 Stability Analysis of the Motion System |
|
|
339 | (3) |
|
9.4.2.2 Design of the Fuzzy Controller |
|
|
342 | (4) |
|
9.4.3 Global Validity and Spatial Scaling |
|
|
346 | (8) |
|
|
348 | (6) |
|
9.5 Learning Skills from Heterogeneous Demonstrations |
|
|
354 | (31) |
|
|
357 | (7) |
|
9.5.1.1 Asymptotic Stability in the Demonstrated Region |
|
|
361 | (2) |
|
9.5.1.2 Ensuring Asymptotic Stability outside Demonstrated Region |
|
|
363 | (1) |
|
9.5.2 Learning Model Parameters from Demonstrations |
|
|
364 | (7) |
|
9.5.2.1 Motion Modeling using GMR |
|
|
364 | (3) |
|
9.5.2.2 Motion Modeling using LWPR |
|
|
367 | (1) |
|
9.5.2.3 Motion Modeling using ˆ-SVR |
|
|
368 | (2) |
|
9.5.2.4 Complete Pipeline |
|
|
370 | (1) |
|
9.5.3 Spatial Error Calculation |
|
|
371 | (1) |
|
|
371 | (11) |
|
9.5.4.1 Example of Monotonic and Non-monotonic State Energy |
|
|
372 | (3) |
|
9.5.4.2 Example of Multitasking with Single and Multiple Task-equilibrium |
|
|
375 | (7) |
|
|
382 | (3) |
|
|
385 | (38) |
|
|
385 | (1) |
|
10.2 Deep Neural Networks and Artificial Neural Networks |
|
|
386 | (18) |
|
|
387 | (8) |
|
10.2.1.1 Multi-layer Perceptron |
|
|
389 | (3) |
|
10.2.1.2 MLP Implementation using Tensorflow |
|
|
392 | (3) |
|
10.2.2 Deep Learning Techniques: An Overview |
|
|
395 | (4) |
|
10.2.2.1 Convolutional Neural Network (Flow and Training with Back-propogation) |
|
|
395 | (4) |
|
10.2.3 Different Architectures of Convolutional Neural Networks (CNNs) |
|
|
399 | (5) |
|
10.3 Examples of Vision-Based Object Detection Techniques |
|
|
404 | (13) |
|
10.3.1 Automatic Annotation of Object ROI |
|
|
405 | (7) |
|
10.3.1.1 Image Acquisition |
|
|
407 | (1) |
|
10.3.1.2 Manual Annotation |
|
|
407 | (1) |
|
10.3.1.3 Augmentation and Clutter Generation |
|
|
407 | (2) |
|
10.3.1.4 Two-class Classification Model using Deep Networks |
|
|
409 | (2) |
|
10.3.1.5 Experimental Results and Discussions |
|
|
411 | (1) |
|
10.3.2 Automatic Segmentation of Objects for Warehouse Automation |
|
|
412 | (5) |
|
10.3.2.1 Network Architecture |
|
|
413 | (3) |
|
|
416 | (1) |
|
10.3.2.3 Single Shot Detection |
|
|
416 | (1) |
|
10.3.3 Automatic Generation of Artificial Clutter |
|
|
417 | (1) |
|
10.3.4 Multi-Class Segmentation using Proposed Network |
|
|
417 | (1) |
|
10.4 Experimental Results |
|
|
417 | (4) |
|
10.4.1 System Description |
|
|
417 | (1) |
|
|
418 | (1) |
|
10.4.2 Ground Truth Generation |
|
|
418 | (1) |
|
10.4.3 Image Segmentation |
|
|
419 | (2) |
|
|
421 | (2) |
|
|
423 | (30) |
|
|
423 | (2) |
|
11.2 Model-Based Grasping |
|
|
425 | (8) |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
427 | (1) |
|
11.2.5 Network Architecture and Training |
|
|
428 | (1) |
|
|
428 | (1) |
|
11.2.7 Grasp Decide Index (GDI) |
|
|
428 | (3) |
|
11.2.8 Final Pose Selection |
|
|
431 | (1) |
|
11.2.9 Overall Pipeline and Result |
|
|
431 | (2) |
|
11.3 Grasping without Object Models |
|
|
433 | (19) |
|
11.3.1 Problem Definition |
|
|
433 | (1) |
|
|
434 | (4) |
|
11.3.2.1 Creating Continuous Surfaces in 3D Point Cloud |
|
|
434 | (4) |
|
11.3.3 Finding Graspable Affordances |
|
|
438 | (5) |
|
11.3.4 Experimental Results |
|
|
443 | (2) |
|
11.3.4.1 Performance Measure |
|
|
443 | (2) |
|
11.3.5 Grasping of Individual Objects |
|
|
445 | (1) |
|
11.3.6 Grasping Objects in a Clutter |
|
|
446 | (5) |
|
|
451 | (1) |
|
|
452 | (1) |
|
12 Warehouse Automation: An Example |
|
|
453 | (30) |
|
|
453 | (3) |
|
|
456 | (1) |
|
|
457 | (2) |
|
|
459 | (17) |
|
12.4.1 System Calibration |
|
|
459 | (1) |
|
|
460 | (2) |
|
12.4.3 Object Recognition |
|
|
462 | (3) |
|
|
465 | (1) |
|
|
466 | (3) |
|
12.4.6 End-Effector Design |
|
|
469 | (2) |
|
12.4.6.1 Suction-based End-effector |
|
|
469 | (1) |
|
12.4.6.2 Combining Gripping with Suction |
|
|
470 | (1) |
|
12.4.7 Robot Manipulator Model |
|
|
471 | (5) |
|
12.4.7.1 Null Space Optimization |
|
|
473 | (1) |
|
12.4.7.2 Inverse Kinematics as a Control Problem . |
|
|
474 | (1) |
|
12.4.7.3 Damped Least Square Method |
|
|
475 | (1) |
|
12.5 Experimental Results |
|
|
476 | (6) |
|
|
477 | (1) |
|
12.5.2 Grasping and Suction |
|
|
478 | (1) |
|
12.5.3 Object Recognition |
|
|
478 | (2) |
|
12.5.4 Direction for Future Research |
|
|
480 | (2) |
|
|
482 | (1) |
II Mobile Robotics |
|
483 | (112) |
|
13 Introduction to Mobile Robotics and Control |
|
|
485 | (22) |
|
|
485 | (1) |
|
13.2 System Model: Nonholonomic Mobile Robots |
|
|
486 | (1) |
|
|
487 | (3) |
|
13.3.1 Rotation about Roll Axis |
|
|
487 | (1) |
|
13.3.2 Rotation about Pitch Axis |
|
|
488 | (1) |
|
13.3.3 Rotation About Yaw Axis |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
491 | (1) |
|
13.5.1 Earth-Centered Earth-Fixed (ECEF) Co-ordinate System |
|
|
491 | (1) |
|
|
492 | (13) |
|
13.6.1 Feedback Linearization |
|
|
493 | (2) |
|
|
495 | (1) |
|
13.6.3 Sliding Mode Control |
|
|
496 | (2) |
|
|
498 | (1) |
|
|
499 | (1) |
|
13.6.6 Nonsingular TSMC (NTSMC) |
|
|
500 | (1) |
|
13.6.7 Fast Nonsingular TSMC (FNTSMC) |
|
|
501 | (1) |
|
13.6.8 Fractional Order SMC (FOSMC) |
|
|
502 | (1) |
|
13.6.9 Higher Order SMC (HOSMC) |
|
|
503 | (2) |
|
|
505 | (2) |
|
|
507 | (30) |
|
|
507 | (2) |
|
14.2 Path Planning Schemes |
|
|
509 | (9) |
|
14.3 Multi-Agent Formation Control |
|
|
518 | (12) |
|
14.3.1 Fast Adaptive Gain NTSMC |
|
|
519 | (5) |
|
14.3.2 Fast Adaptive Fuzzy NTSMC (FAFNTSMC) |
|
|
524 | (3) |
|
14.3.3 Fault Detection, Isolation and Collision Avoidance Scheme |
|
|
527 | (3) |
|
|
530 | (5) |
|
|
535 | (2) |
|
15 Event Triggered Multi-Robot Consensus |
|
|
537 | (18) |
|
15.1 Introduction to Event Triggered Control |
|
|
537 | (2) |
|
15.2 Event Triggered Consensus |
|
|
539 | (5) |
|
|
541 | (3) |
|
15.2.2 Sliding Mode-Based Finite Time Consensus |
|
|
544 | (1) |
|
15.3 Event Triggered Sliding Mode-based Consensus Algorithm |
|
|
544 | (8) |
|
15.3.1 Consensus-based Tracking Control of Nonholonomic Multi-robot Systems |
|
|
549 | (3) |
|
|
552 | (2) |
|
|
554 | (1) |
|
16 Vision-Based Tracking for a Human Following Mobile Robot |
|
|
555 | (40) |
|
16.1 Visual Tracking: Introduction |
|
|
555 | (3) |
|
16.1.1 Difficulties in Visual Tracking |
|
|
555 | (1) |
|
16.1.2 Required Features of Visual Tracking |
|
|
555 | (1) |
|
16.1.3 Feature Descriptors for Visual Tracking |
|
|
556 | (2) |
|
16.2 Human Tracking Algorithm using SURF Based Dynamic Object Model |
|
|
558 | (9) |
|
16.2.1 Problem Definition |
|
|
559 | (1) |
|
16.2.2 Object Model Description |
|
|
560 | (2) |
|
16.2.2.1 Maintaining a Template Pool of Descriptors |
|
|
561 | (1) |
|
16.2.3 The Tracking Algorithm |
|
|
562 | (2) |
|
16.2.3.1 Step 1: Target Initialization |
|
|
563 | (1) |
|
16.2.3.2 Step 2: Object Recognition and Template Pool Update |
|
|
563 | (1) |
|
16.2.3.3 Step 3: Occlusion Detection, Target Window Prediction |
|
|
564 | (1) |
|
16.2.4 SURF-Based Mean-Shift Algorithm |
|
|
564 | (1) |
|
16.2.5 Modified Object Model Description |
|
|
565 | (1) |
|
16.2.6 Modified Tracking Algorithm |
|
|
566 | (1) |
|
16.3 Human Tracking Algorithm with the Detection of Pose Change due to Out-of-plane Rotations |
|
|
567 | (9) |
|
16.3.1 Problem Definition |
|
|
567 | (1) |
|
16.3.2 Tracking Algorithm |
|
|
568 | (1) |
|
16.3.3 Template Initialization |
|
|
569 | (1) |
|
|
570 | (1) |
|
16.3.4.1 Scaling and Re-positioning the Tracking Window |
|
|
571 | (1) |
|
16.3.5 Template Update Module |
|
|
571 | (1) |
|
16.3.6 Error Recovery Module |
|
|
572 | (4) |
|
16.3.6.1 KD-tree Classifier |
|
|
572 | (1) |
|
16.3.6.2 Construction of KD-Tree |
|
|
573 | (1) |
|
16.3.6.3 Dealing with Pose Change |
|
|
573 | (1) |
|
16.3.6.4 Tracker Recovery from Full Occlusions |
|
|
574 | (2) |
|
16.4 Human Tracking Algorithm Based on Optical Flow |
|
|
576 | (5) |
|
16.4.1 The Template Pool and its Online Update |
|
|
577 | (3) |
|
16.4.1.1 Selection of New Templates |
|
|
578 | (2) |
|
16.4.2 Re-Initialization of Optical Flow Tracker |
|
|
580 | (1) |
|
16.4.3 Detection of Partial and Full Occlusion |
|
|
580 | (1) |
|
16.5 Visual Servo Controller |
|
|
581 | (4) |
|
16.5.1 Kinematic Model of the Mobile Robot |
|
|
582 | (1) |
|
16.5.2 Pinhole Camera Model |
|
|
582 | (1) |
|
16.5.3 Problem Formulation |
|
|
582 | (1) |
|
16.5.4 Visual Servo Control Design |
|
|
583 | (1) |
|
16.5.5 Simulation Results |
|
|
584 | (1) |
|
16.5.5.1 Example: Tracking an Object which Moves in a Circular Trajectory |
|
|
584 | (1) |
|
16.6 Experimental Results |
|
|
585 | (8) |
|
16.6.1 Experimental Results for the Human Tracking Algorithm Based on SURF-based Dynamic Object Model |
|
|
585 | (1) |
|
|
586 | (3) |
|
16.6.3 Human Following Robot |
|
|
589 | (1) |
|
16.6.4 Discussion on Performance Comparison |
|
|
590 | (1) |
|
16.6.5 Experimental Evaluation of Human Tracking Algorithm Based on Optical Flow |
|
|
591 | (2) |
|
|
593 | (2) |
Exercises |
|
595 | (8) |
Bibliography |
|
603 | (42) |
Index |
|
645 | |