Preface |
|
xiii | (2) |
|
|
xv | |
|
1 Introduction and Preliminaries |
|
|
1 | (42) |
|
|
1 | (4) |
|
1.2 Mathematical Preliminaries |
|
|
5 | (10) |
|
|
5 | (3) |
|
|
8 | (4) |
|
|
12 | (2) |
|
|
14 | (1) |
|
1.3 Decision and Optimization Problems |
|
|
15 | (13) |
|
1.3.1 System of linear equations |
|
|
15 | (1) |
|
1.3.2 System of nonlinear equations |
|
|
16 | (1) |
|
1.3.3 Linear least-squares problem |
|
|
16 | (1) |
|
1.3.4 System of linear inequalities |
|
|
17 | (1) |
|
1.3.5 Linear programming (LP) |
|
|
18 | (4) |
|
1.3.6 Quadratic programming (QP) |
|
|
22 | (1) |
|
1.3.7 Linear complementarity problem (LCP) |
|
|
23 | (1) |
|
1.3.8 Positive semi-definite programming (PSP) |
|
|
24 | (3) |
|
1.3.9 Nonlinear programming (NP) |
|
|
27 | (1) |
|
1.3.10 Nonlinear complementarity problem (NCP) |
|
|
27 | (1) |
|
1.4 Algorithms and Computation Models |
|
|
28 | (6) |
|
1.4.1 Worst-case complexity |
|
|
29 | (2) |
|
1.4.2 Condition-based complexity |
|
|
31 | (1) |
|
|
32 | (1) |
|
1.4.4 Asymptotic complexity |
|
|
33 | (1) |
|
1.5 Basic Computational Procedures |
|
|
34 | (4) |
|
1.5.1 Gaussian elimination method |
|
|
35 | (1) |
|
1.5.2 Choleski decomposition method |
|
|
35 | (1) |
|
|
36 | (1) |
|
1.5.4 Solving ball-constrained linear problem |
|
|
37 | (1) |
|
1.5.5 Solving ball-constrained quadratic problem |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (4) |
|
2 Geometry of Convex Inequalities |
|
|
43 | (38) |
|
|
44 | (4) |
|
|
44 | (1) |
|
|
45 | (3) |
|
|
48 | (11) |
|
|
48 | (2) |
|
2.2.2 Dual potential function |
|
|
50 | (3) |
|
2.2.3 Analytic central-section inequalities |
|
|
53 | (6) |
|
2.3 Primal and Primal-Dual Potential Functions |
|
|
59 | (4) |
|
2.3.1 Primal potential function |
|
|
59 | (3) |
|
2.3.2 Primal-dual potential function |
|
|
62 | (1) |
|
2.4 Potential Functions for LP, LCP, and PSP |
|
|
63 | (7) |
|
2.4.1 Primal potential function for LP |
|
|
63 | (3) |
|
2.4.2 Dual potential function for LP |
|
|
66 | (1) |
|
2.4.3 Primal-dual potential function for LP |
|
|
66 | (1) |
|
2.4.4 Potential function for LCP |
|
|
67 | (1) |
|
2.4.5 Potential function for PSP |
|
|
68 | (2) |
|
2.5 Central Paths of LP, LCP, and PSP |
|
|
70 | (5) |
|
2.5.1 Central path for LP |
|
|
70 | (4) |
|
2.5.2 Central path for LCP |
|
|
74 | (1) |
|
2.5.3 Central path for PSP |
|
|
74 | (1) |
|
|
75 | (2) |
|
|
77 | (4) |
|
3 Computation of Analytic Center |
|
|
81 | (28) |
|
3.1 Proximity to Analytic Center |
|
|
81 | (6) |
|
|
87 | (7) |
|
3.2.1 Dual Newton procedure |
|
|
87 | (2) |
|
3.2.2 Dual potential algorithm |
|
|
89 | (1) |
|
3.2.3 Central-section algorithm |
|
|
90 | (4) |
|
|
94 | (7) |
|
3.3.1 Primal Newton procedure |
|
|
94 | (1) |
|
3.3.2 Primal potential algorithm |
|
|
95 | (5) |
|
3.3.3 Affine scaling algorithm |
|
|
100 | (1) |
|
3.4 Primal-Dual (Symmetric) Algorithms |
|
|
101 | (5) |
|
3.4.1 Primal-dual Newton procedure |
|
|
102 | (1) |
|
3.4.2 Primal-dual potential algorithm |
|
|
103 | (3) |
|
|
106 | (2) |
|
|
108 | (1) |
|
4 Linear Programming Algorithms |
|
|
109 | (38) |
|
4.1 Karmarkar's Algorithm |
|
|
109 | (8) |
|
4.2 Path-Following Algorithm |
|
|
117 | (3) |
|
4.3 Potential Reduction Algorithm |
|
|
120 | (6) |
|
4.4 Primal-Dual (Symmetric) Algorithm |
|
|
126 | (2) |
|
4.5 Adaptive Path-Following Algorithms |
|
|
128 | (8) |
|
4.5.1 Predictor-corrector algorithm |
|
|
131 | (3) |
|
4.5.2 Wide-neighborhood algorithm |
|
|
134 | (2) |
|
4.6 Affine Scaling Algorithm |
|
|
136 | (5) |
|
4.7 Extensions to QP and LCP |
|
|
141 | (1) |
|
|
142 | (3) |
|
|
145 | (2) |
|
|
147 | (32) |
|
|
148 | (4) |
|
|
152 | (2) |
|
5.2.1 Strict complementarity partition |
|
|
153 | (2) |
|
5.2.2 Project an interior point onto the optimal face |
|
|
155 | (2) |
|
|
157 | (12) |
|
5.3.1 A HSD linear program |
|
|
159 | (5) |
|
|
164 | (3) |
|
|
167 | (2) |
|
5.4 Infeasible-Starting Algorithm |
|
|
169 | (4) |
|
|
173 | (3) |
|
|
176 | (3) |
|
|
179 | (30) |
|
|
181 | (6) |
|
6.1.1 High-probability behavior |
|
|
182 | (1) |
|
6.1.2 Proof of the theorem |
|
|
183 | (4) |
|
6.2 Random-Problem Analysis I |
|
|
187 | (9) |
|
6.2.1 High-probability behavior |
|
|
189 | (4) |
|
6.2.2 Random linear problems |
|
|
193 | (3) |
|
6.3 Random-Problem Analysis II |
|
|
196 | (10) |
|
|
197 | (4) |
|
6.3.2 Random model and analysis |
|
|
201 | (5) |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
209 | (22) |
|
|
209 | (4) |
|
7.1.1 Order of convergence |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
7.2 Superlinear Convergence: LP |
|
|
213 | (5) |
|
|
213 | (3) |
|
7.2.2 Quadratic convergence |
|
|
216 | (2) |
|
7.3 Superlinear Convergence: Monotone LCP |
|
|
218 | (6) |
|
7.3.1 Predictor-corrector algorithm for LCP |
|
|
218 | (2) |
|
|
220 | (2) |
|
7.3.3 Quadratic convergence |
|
|
222 | (2) |
|
7.4 Quadratically Convergent Algorithms |
|
|
224 | (3) |
|
|
224 | (1) |
|
|
225 | (2) |
|
|
227 | (2) |
|
|
229 | (2) |
|
|
231 | (46) |
|
8.1 Analytic Centers of Nested Polytopes |
|
|
231 | (5) |
|
8.1.1 Recursive potential reduction algorithm |
|
|
232 | (3) |
|
8.1.2 Complexity analysis |
|
|
235 | (1) |
|
8.2 Convex (Non-Smooth) Feasibility |
|
|
236 | (10) |
|
8.2.1 Max-potential reduction |
|
|
238 | (1) |
|
8.2.2 Compute a new approximate center |
|
|
239 | (3) |
|
8.2.3 Convergence and complexity |
|
|
242 | (4) |
|
8.3 Positive Semi-Definite Programming |
|
|
246 | (10) |
|
8.3.1 Potential reduction algorithm |
|
|
248 | (6) |
|
8.3.2 Primal-dual algorithm |
|
|
254 | (2) |
|
8.4 Monotone Complementarity Problem |
|
|
256 | (17) |
|
|
257 | (3) |
|
8.4.2 A homogeneous MCP model |
|
|
260 | (5) |
|
|
265 | (3) |
|
8.4.4 An interior-point algorithm |
|
|
268 | (5) |
|
|
273 | (2) |
|
|
275 | (2) |
|
|
277 | (60) |
|
9.1 von Neumann Economic Growth Problem |
|
|
277 | (14) |
|
9.1.1 Max-potential of XXX(XXX) |
|
|
279 | (5) |
|
9.1.2 Approximate analytic centers of XXX(XXX) |
|
|
284 | (2) |
|
9.1.3 Central-section algorithm |
|
|
286 | (5) |
|
9.2 Linear Complementarity Problem |
|
|
291 | (12) |
|
9.2.1 Potential reduction algorithm |
|
|
292 | (3) |
|
|
295 | (3) |
|
|
298 | (5) |
|
9.3 Generalized Linear Complementarity Problem |
|
|
303 | (7) |
|
9.3.1 Potential reduction algorithm |
|
|
304 | (2) |
|
9.3.2 Complexity analysis |
|
|
306 | (3) |
|
9.3.3 Further discussions |
|
|
309 | (1) |
|
9.4 Indefinite Quadratic Programming |
|
|
310 | (15) |
|
9.4.1 Potential reduction algorithm |
|
|
312 | (4) |
|
9.4.2 Generating an XXX-KKT point |
|
|
316 | (2) |
|
9.4.3 Solving the ball-constrained QP problem |
|
|
318 | (7) |
|
9.5 Approximating Quadratic Programming |
|
|
325 | (7) |
|
9.5.1 Positive semi-definite relaxation |
|
|
325 | (2) |
|
9.5.2 Approximation analysis |
|
|
327 | (5) |
|
|
332 | (3) |
|
|
335 | (2) |
|
|
337 | (28) |
|
|
337 | (3) |
|
10.2 Linear System Solver |
|
|
340 | (10) |
|
10.2.1 Solving normal equation |
|
|
340 | (3) |
|
10.2.2 Solving augmented system |
|
|
343 | (2) |
|
|
345 | (4) |
|
|
349 | (1) |
|
|
350 | (5) |
|
10.3.1 High-order predictor-corrector method |
|
|
350 | (2) |
|
10.3.2 Analysis of a high-order method |
|
|
352 | (3) |
|
10.4 Homogeneous and Self-Dual Method |
|
|
355 | (1) |
|
10.5 Optimal-Basis Identifier |
|
|
356 | (3) |
|
10.5.1 A pivoting algorithm |
|
|
356 | (2) |
|
10.5.2 Theoretical and computational issues |
|
|
358 | (1) |
|
|
359 | (4) |
|
|
363 | (2) |
Bibliography |
|
365 | (44) |
Index |
|
409 | |