Muutke küpsiste eelistusi

E-raamat: Interpretive Solutions for Dynamic Structures Through ABAQUS Finite Element Packages [Taylor & Francis e-raamat]

(University Putra Malaysia, Selangor, Malaysia), (University of Sheffield, United Kingdom)
  • Formaat: 280 pages, 13 Tables, black and white; 8 Line drawings, black and white; 407 Halftones, black and white; 415 Illustrations, black and white
  • Ilmumisaeg: 15-Dec-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003219491
  • Taylor & Francis e-raamat
  • Hind: 216,96 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 309,94 €
  • Säästad 30%
  • Formaat: 280 pages, 13 Tables, black and white; 8 Line drawings, black and white; 407 Halftones, black and white; 415 Illustrations, black and white
  • Ilmumisaeg: 15-Dec-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003219491
ABAQUS software is a general-purpose finite element simulation package mainly used for numerically solving a wide variety of design engineering problems; however, its application to simulate the dynamic structures within the civil engineering domain is highly complicated. Therefore, this book aims to present specific complicated and puzzling challenges encountered in the application of Finite Element Method (FEM) for solving the problems related to Structural Dynamics using ABAQUS software that can fully utilize this method in complex simulation and analysis. Various chapters of this book demonstrate the process for the modeling and analysis of impenetrable problems through simplified step-by-step illustration by presenting screenshots from ABAQUS software in each part/step and showing various graphs.

Highlights:











Focuses on solving problems related to Structural Dynamics using ABAQUS software





Helps to model and analyze the different types of structures under various dynamic and cyclic loads





Discusses the simulation of irregularly-shaped objects comprising several different materials with multipart boundary conditions





Includes the application of various load effects to develop structural models using ABAQUS software





Covers a broad array of applications such as bridges, offshores, dams, and seismic resistant systems

Overall, this book is aimed at graduate students, researchers, and professionals in structural engineering, solid mechanics, and civil engineering.
List of Figures xi
List of Tables xxvii
Preface xxix
Authors xxxi
Chapter 1 Development of Subroutines for ABAQUS Software 1(26)
1.1 Introduction
1(1)
1.2 Problem Description
2(1)
1.3 Objectives
2(1)
1.4 Developing a UMAT Subroutine
2(6)
1.5 Modeling
8(14)
1.5.1 Parts Module
9(2)
1.5.2 Property Module
11(1)
1.5.2.1 Material Properties
11(1)
1.5.2.2 Section Properties
11(1)
1.5.2.3 Section Assignment
11(1)
1.5.3 Assembly Module
11(2)
1.5.4 Step Module
13(4)
1.5.4.1 Implicit Dynamics
14(3)
1.5.4.2 Explicit Dynamics
17(1)
1.5.5 Required Output
17(1)
1.5.6 Interaction Module
17(2)
1.5.7 Load Module
19(3)
1.5.8 Mesh Module
22(1)
1.6 Analysis: Job Module
22(1)
1.7 Analysis Results
22(5)
Chapter 2 Evaluate Performance of Steel Wall in Structures Subjected to Cyclic Load 27(32)
2.1 Introduction
27(1)
2.2 Problem Description
27(1)
2.3 Objectives
27(1)
2.4 Modeling
28(24)
2.4.1 Part Module
28(3)
2.4.1.1 Create a New Model Database
28(1)
2.4.1.2 Create Parts
28(2)
2.4.1.3 Define an I Shape with Dimensions
30(1)
2.4.1.4 Create Partition
31(1)
2.4.2 Property Module
31(6)
2.4.2.1 Material Properties
32(2)
2.4.2.2 Section Properties (Type, Thickness, and Material Assignment)
34(2)
2.4.2.3 Section Assignment
36(1)
2.4.3 Assembly Module
37(1)
2.4.3.1 Assemble Part Instances into the Model
37(1)
2.4.4 Step Module
37(5)
2.4.4.1 Create an Analysis Step: Step 1
39(3)
2.4.5 Interaction Module
42(1)
2.4.5.1 Tie Constraint
42(1)
2.4.6 Load Module
42(4)
2.4.7 Mesh Module
46(6)
2.4.7.1 Mesh: Seed the Part (50mm Elements)
46(1)
2.4.7.2 Assign an ABAQUS Element Type
46(2)
2.4.7.3 Seed and Mesh the Model
48(2)
2.4.7.4 Verify Mesh
50(2)
2.5 Analysis: Job Module
52(2)
2.5.1 Create an Analysis Job: Job-1
52(2)
2.5.2 Monitor Solution in Progress
54(1)
2.6 Visualization Module
54(5)
2.6.1 View the Results of the Analysis
54(1)
2.6.2 Visualization/Results Module
55(4)
Chapter 3 Performance of Reinforced-Concrete Frame with Embedded CFRP Rod under Cyclic Load 59(42)
3.1 Introduction
59(1)
3.2 Problem Description
59(2)
3.2.1 Problem Statement
59(3)
3.2.1.1 Material Properties
60(1)
3.3 Objectives
61(1)
3.4 Modeling
62(23)
3.4.1 Part Module
62(3)
3.4.1.1 Create a New Model Database
62(1)
3.4.1.2 Create a New Model Database and a New Part
63(1)
3.4.1.3 Define a Rectangle with Dimensions
63(1)
3.4.1.4 Define Section of the Rebars Section with Dimensions
64(1)
3.4.2 Property Module
65(5)
3.4.2.1 Material Properties
65(3)
3.4.2.2 Section Properties
68(2)
3.4.2.3 Section Assignment
70(1)
3.4.3 Mesh Module
70(2)
3.4.3.1 Mesh
70(2)
3.4.4 Assembly Module
72(1)
3.4.4.1 Assemble Part Instances into the Model
73(1)
3.4.5 Interaction Module
73(4)
3.4.5.1 Tie Constraint
73(2)
3.4.5.2 Embedded Region Constraint
75(1)
3.4.5.3 Create an Embedded Region Constraint
75(2)
3.4.6 Step Module
77(3)
3.4.6.1 Create an Analysis Step: Apply Load
78(2)
3.4.7 Load Condition Module
80(5)
3.4.7.1 Apply Cyclic Loading to the Frame
84(1)
3.5 Analysis: Job Module
85(2)
3.5.1 Create an Analysis Job: Job-1
85(2)
3.5.2 Monitor the Solution in Progress
87(1)
3.6 Visualization Module
87(1)
3.6.1 View the Results of the Analysis
87(1)
3.7 Analysis Result
88(4)
3.7.1 Hysteresis Results
88(2)
3.7.2 Stresses in Frame
90(1)
3.7.3 Total Strain in Frame
90(1)
3.7.4 Plasticity Contour Plots in Frame
91(1)
3.8 Discussions
92(9)
Chapter 4 Behavior of Precast Beam-Column Dowel Connection under Cyclic Loads 101(58)
4.1 Introduction
101(1)
4.2 Problem Description
101(1)
4.2.1 Geometric Properties
101(1)
4.2.2 Material Properties
101(1)
4.3 Objectives
102(3)
4.4 Modeling
105(43)
4.4.1 Part Module
105(12)
4.4.1.1 Create a New Model Database
105(1)
4.4.1.2 Create a New Model Database and a New Part
105(1)
4.4.1.3 Define Section of the Precast Beam with Dimension
106(2)
4.4.1.4 Create a Circular Hole
108(1)
4.4.1.5 Create Partition
109(6)
4.4.1.6 Create a New Part
115(1)
4.4.1.7 Define Bottom Bar Section with Dimension
115(2)
4.4.2 Property Module
117(5)
4.4.2.1 Material Properties
117(2)
4.4.2.2 Section Properties
119(2)
4.4.2.3 Section Assignments
121(1)
4.4.3 Assembly Module
122(3)
4.4.4 Step Module
125(3)
4.4.5 Interaction Module
128(8)
4.4.5.1 Surface-to-Surface Contact Interaction
129(6)
4.4.5.2 Tie Constraint
135(1)
4.4.6 Load Condition Module
136(7)
4.4.7 Mesh Module
143(2)
4.4.8 History Output Definition
145(3)
4.4.8.1 Create Sets of Nodes
146(1)
4.4.8.2 History Output for the Sets
146(2)
4.5 Analysis: Job Module
148(1)
4.5.1 Create an Analysis Job: Job-1
148(1)
4.6 Visualization Module
149(2)
4.6.1 View the Results of the Analysis
149(2)
4.7 Contour plots
151(7)
4.8 Conclusion
158(1)
Chapter 5 Simulation of the Preloaded Bolt Connection under Cyclic Loading 159(46)
5.1 Introduction
159(1)
5.2 Problem Description
159(2)
5.3 Objectives
161(1)
5.4 Modeling
161(38)
5.4.1 Part Module
162(8)
5.4.1.1 Modifying Parts for Use in the Connection
168(2)
5.4.2 Material Properties
170(3)
5.4.3 Section Properties
173(1)
5.4.4 Section Assignment
174(1)
5.4.5 Assembly Module
175(6)
5.4.6 Meshing Module
181(8)
5.4.7 Step Module
189(1)
5.4.8 Interaction Module
190(4)
5.4.8.1 Coupling Constraint
192(2)
5.4.9 Load Module
194(1)
5.4.10 Boundary Condition
194(5)
5.5 Analysis: Job Module
199(1)
5.6 Results
199(6)
Chapter 6 Beam-Column Connection Retrofitted with CFRP Sheets Subjected to Pushover Loading 205(30)
6.1 Introduction
205(1)
6.2 Problem Description
205(1)
6.3 Objectives
206(1)
6.4 Modeling
206(24)
6.4.1 Part Module
206(6)
6.4.1.1 Create a New Model Database
207(1)
6.4.1.2 Create a New Model Database and a New Part
207(1)
6.4.1.3 Define a Rectangle with Dimensions
208(1)
6.4.1.4 Extrude Solid to Create a Beam
208(4)
6.4.2 Property Module
212(5)
6.4.2.1 Material Properties
212(4)
6.4.2.2 Section Properties
216(1)
6.4.2.3 Assign Sections to Parts
217(1)
6.4.3 Mesh Module
217(4)
6.4.4 Assembly Module
221(1)
6.4.5 Step Module
222(4)
6.4.6 Interaction Module
226(1)
6.4.7 Load Module
227(3)
6.5 Analysis: Job Module
230(2)
6.6 Visualization Module
232(3)
Chapter 7 Hollow Circular Ultra-High-Performance Concrete (UHPFRC) Section under Lateral Cyclic Load 235(40)
7.1 Introduction
235(1)
7.2 Problem Description
235(1)
7.2.1 Geometric Properties
236(1)
7.3 Objectives
236(1)
7.4 Modeling
236(30)
7.4.1 Part Module
236(6)
7.4.2 Property Module
242(9)
7.4.2.1 Material Properties
244(2)
7.4.2.2 Section Properties
246(4)
7.4.2.3 Assigning the Defined Section to the Parts
250(1)
7.4.3 Assembly Module
251(2)
7.4.4 Step Module
253(6)
7.4.4.1 Create an Analysis Step: Cyclic
253(1)
7.4.4.2 Create an Amplitude
253(1)
7.4.4.3 Create Set for Request History Output
253(3)
7.4.4.4 Create Partitions for the Hollow Circular Section
256(3)
7.4.5 Interaction Module
259(1)
7.4.5.1 General Contact Interaction
259(1)
7.4.5.2 Embedded Region Constraint
259(1)
7.4.6 Load Condition Module
260(5)
7.4.6.1 Apply the Cyclic Displacement as a Boundary Condition
260(4)
7.4.6.2 Apply Boundary Condition to the Column Base
264(1)
7.4.7 Mesh Module
265(1)
7.5 Analysis: Job Module
266(1)
7.6 Visualization Module
267(4)
7.7 Analysis Result
271(4)
Chapter 8 Modal Analysis of a Three-Story Building 275(26)
8.1 Introduction
275(1)
8.2 Problem Description
275(1)
8.3 Objectives
276(1)
8.4 Modeling
276(18)
8.4.1 Part Module
276(1)
8.4.1.1 Create a New Model Database
276(1)
8.4.1.2 Create Part
276(1)
8.4.2 Property Module
277(3)
8.4.2.1 Material Properties
277(1)
8.4.2.2 Section Properties
278(2)
8.4.2.3 Section Assignment
280(1)
8.4.3 Assembly Module
280(1)
8.4.4 Step Module
281(6)
8.4.5 Interaction Module
287(2)
8.4.5.1 Tie Constraint
287(2)
8.4.6 Load Module
289(1)
8.4.7 Mesh Module
290(4)
8.5 Analysis: Job Module
294(1)
8.6 Visualization Module
295(6)
Index 301
Farzad Hejazi is Associate Professor and Research Coordinator at Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia (UPM) and Senior Visiting Academic in University of Sheffield. He received his PhD in Structural Engineering from University Putra Malaysia in 2011 and worked as postdoctoral fellow until 2012 and thereafter employed as a member of department of Civil Engineering, UPM. His specific field of expertise are Structural Engineering, Structural Dynamic, Reinforced concrete Structures, Vibration, Finite Element Method, Inelastic Analysis, Earthquake, Damper Device, Vibration Dissipation Systems, Active and Passive Structural Control Systems, Optimization, Computer Program Coding, Structure Simulation.

Hojjat Mohammadi Esfahani received his bachelor of Mechanical Engineering at 2007 and his Master of Science in the same field of Mechanical Engineering at 2017. His main expert and focus area is Finite Element Simulation and he has more than 10 years experience in teaching and training of Finite Element Packages such as ABAQUS. Currently he is involving with many research and industry projects regarding simulation of complex and infrastructures by using ABAQUS Finite Element Software in Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia (UPM).