Muutke küpsiste eelistusi

E-raamat: Introduction to Holography 2nd edition [Taylor & Francis e-raamat]

(Dublin Institute of Technology, Ireland)
  • Formaat: 430 pages, 1 Tables, black and white; 25 Line drawings, color; 307 Line drawings, black and white; 12 Halftones, color; 23 Halftones, black and white; 37 Illustrations, color; 330 Illustrations, black and white
  • Sari: Series in Optics and Optoelectronics
  • Ilmumisaeg: 13-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9781003155416
Teised raamatud teemal:
  • Taylor & Francis e-raamat
  • Hind: 240,04 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 342,91 €
  • Säästad 30%
  • Formaat: 430 pages, 1 Tables, black and white; 25 Line drawings, color; 307 Line drawings, black and white; 12 Halftones, color; 23 Halftones, black and white; 37 Illustrations, color; 330 Illustrations, black and white
  • Sari: Series in Optics and Optoelectronics
  • Ilmumisaeg: 13-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9781003155416
Teised raamatud teemal:
This fully updated second edition of Introduction to Holography provides a theoretical background in optics and holography with a comprehensive survey of practical applications. It is intended for the non-specialist with an interest in using holographic methods in research and engineering.

The text assumes some knowledge of electromagnetism, although this is not essential for an understanding of optics, which is covered in the first two chapters. A descriptive approach to the history and principles of holography is followed by a chapter on volume holography. Essential practical requirements for successful holographic recording are explained in detail. Recording materials are considered with detailed discussions of those in common use. Properties peculiar to holographically reconstructed images are emphasised as well as applications for which holography is particularly suitable. Mathematical tools are introduced as and when required throughout the text with important results derived in detail. In this new edition, topics such as photopolymers, dynamic holographic displays, holographic optical elements, sensors, and digital holography are covered in greater depth. New topics have been added, including UV and infrared holography, holographic authentication and encryption, as well as particle beam, X-ray, and acoustic holography. Numerical problems are provided at the end of each chapter.

This book is suitable for undergraduate courses and will be an important resource for those teaching optics and holography. It provides scientists and engineers with knowledge of a wide range of holographic applications in research and industry, as well as an understanding of holographys potential for future use.
Preface xv
Acknowledgements xvii
Section I Optics
1 Light Waves and Rays
3(18)
1.1 Introduction
3(1)
1.2 Description of Light Waves
3(1)
1.3 Spatial Frequency
4(1)
1.4 The Equation of a Plane Wave
5(1)
1.5 Non-planar Wavef ronts
6(1)
1.6 Geometrical Optics
7(3)
1.6.1 The Thin Lens
7(2)
1.6.2 Spherical Mirror
9(1)
1.6.3 Refraction and Reflection
9(1)
1.7 Reflection, Refraction, and the Fresnel Equations
10(6)
1.7.1 Reflection and Refraction
10(1)
1.7.2 The Fresnel Equations
11(1)
1.7.2.1 Electric Field Perpendicular to the Plane of Incidence
12(1)
1.7.2.2 Electric Field Parallel to the Plane of Incidence
13(1)
1.7.2.3 Anti-reflection Coatings
13(2)
1.7.2.4 Total Internal Reflection and Evanescent Waves
15(1)
1.7.2.5 Intensity Reflection and Transmission Ratios
15(1)
1.8 Introduction to Spatial Filtering
16(5)
1.8.1 Phase Contrast Imaging
17(2)
Problems
19(2)
2 Physical Optics
21(30)
2.1 Introduction
21(1)
2.2 Diffraction
21(10)
2.2.1 The Diffraction Grating
21(2)
2.2.1.1 Single Slit
23(1)
2.2.1.2 Double Slit
24(1)
2.2.1.3 The Diffraction Grating (Multiple Slits)
24(2)
2.2.1.4 Resolution and Resolving Power -
26(2)
2.2.2 Circular Aperture
28(3)
2.3 Diffraction and Spatial Fourier Transformation
31(2)
2.4 Phase Effect of a Thin Lens
33(1)
2.5 Fourier Transformation by a Lens
34(1)
2.6 Fourier Transform Property of a Lens--A Physical Argument
35(1)
2.7 Interference by Division of Amplitude
35(2)
2.8 Coherence
37(4)
2.8.1 Production of Light
37(1)
2.8.2 The Bandwidth of Light Sources
38(1)
2.8.3 Spatial Coherence
39(2)
2.9 Polarized Light
41(10)
2.9.1 Plane Polarized Light
41(1)
2.9.2 Other Polarization States
41(1)
2.9.3 Production of Linearly Polarized Light by Reflection and Transmission
42(2)
2.9.4 Anisotropy and Birefringence
44(2)
2.9.5 Birefringent Polarizers and Polarizing Beamsplitters
46(1)
References
46(1)
Problems
46(5)
Section II Principles of Holography
3 Introducing Holography
51(16)
3.1 Introduction: Difference between Two Spatial Frequencies
51(1)
3.2 Recording and Reconstruction of a Simple Diffraction Grating
51(3)
3.2.1 Amplitude Gratings
51(2)
3.2.2 Phase Gratings
53(1)
3.3 Generalised Recording and Reconstruction
54(1)
3.4 A Short History of Holography
54(5)
3.4.1 X-ray Diffraction
54(1)
3.4.2 Diffraction and Fourier Transformation
54(2)
3.4.3 Electron Microscopy and the First Holograms
56(1)
3.4.4 Photographic Emulsions and Gabor Holography
57(2)
3.5 Simple Theory of Holography
59(2)
3.5.1 Holographic Recording
59(1)
3.5.2 Amplitude Holograms
60(1)
3.5.2.1 Gabor (In-Line) Holography
61(1)
3.5.2.2 Off-Axis Holography
61(1)
3.6 Phase Conjugacy
61(2)
3.7 Phase Holograms
63(4)
References
64(1)
Problems
64(3)
4 Volume Holography
67(22)
4.1 Introduction
67(1)
4.2 Volume Holography and Coupled Wave Theory
67(5)
4.2.1 Thick Holographic Diffraction Gratings
67(1)
4.2.2 Light Waves in a Dielectric Medium
67(1)
4.2.3 Light Waves in a Dielectric Medium with a Grating
68(4)
4.3 Characteristics of Thick Holographic Gratings
72(8)
4.3.1 Transmission Gratings
72(1)
4.3.1.1 Phase Transmission Gratings
72(1)
4.3.1.2 Q and p Parameters
73(1)
4.3.1.3 Unslanted Amplitude Gratings
74(2)
4.3.2 Unslanted Reflection Gratings
76(1)
4.3.2.1 Unslanted Reflection Phase Gratings
77(2)
4.3.2.2 Reflection Amplitude Gratings
79(1)
4.4 Rigorous Coupled-Wave Theory
80(1)
4.5 A Simpler Approach
81(8)
4.5.1 Bandwidth
81(1)
4.5.2 Diffraction Efficiency
82(2)
References
84(1)
Problems
84(5)
Section III Holography in Practice
5 Requirements for Holography
89(20)
5.1 Introduction
89(1)
5.2 Coherence
89(1)
5.3 The Michelson Interferometer
89(2)
5.4 Lasers
91(1)
5.5 The Fabry-Perot Interferometer, Etalon, and Cavity
91(2)
5.6 Stimulated Emission and the Optical Amplifier
93(1)
5.7 Laser Systems
94(6)
5.7.1 Gas Lasers
94(1)
5.7.1.1 The Helium-Neon Laser
94(2)
5.7.1.2 Argon Ion Lasers
96(1)
5.7.1.3 Krypton Ion Lasers
97(1)
5.7.1.4 Helium-Cadmium Lasers
97(1)
5.7.1.5 Exciplex Lasers
97(1)
5.7.2 Solid State Lasers
98(1)
5.7.2.1 Semiconductor Diode Lasers
98(1)
5.7.2.2 Quantum Cascade Lasers
98(1)
5.7.2.3 Doped Crystal Lasers
99(1)
5.7.3 Dye Lasers
99(1)
5.8 Q-switched Lasers
100(1)
5.9 Frequency Doubled Lasers
101(1)
5.10 Free Electron Lasers
101(1)
5.11 Mode Locking of Lasers
102(1)
5.12 Spatial Coherence of Lasers
103(1)
5.13 Laser Safety
104(1)
5.14 Mechanical Stability
104(1)
5.15 Thermal Stability
104(1)
5.16 Checking for Stability
105(1)
5.17 Resolution of the Recording Material
106(1)
5.18 Good Practice in Hologram Recording
106(3)
Problems
107(2)
6 Practical Recording Materials
109(22)
6.1 Introduction
109(1)
6.2 Silver Halide
109(5)
6.2.1 Available Silver Halide Materials
110(1)
6.2.2 Processing of Silver Halide to Obtain an Amplitude Hologram
111(1)
6.2.3 Processing to Obtain a Phase Hologram - Rehalogenation
112(1)
6.2.4 Processing to Obtain a Phase Hologram - Reversal Bleaching
112(1)
6.2.5 Silver Halide Processing in Practice
112(2)
6.3 Dichromated Gelatin
114(1)
6.4 Thermoplastics
115(1)
6.5 Photoresists
116(1)
6.6 Self-Processing Recording Materials
117(14)
6.6.1 Photochromic and Photodichroic Materials
117(1)
6.6.2 Photorefractives
117(2)
6.6.3 Nonlinear Optical Materials
119(1)
6.6.4 Photopolymers
120(1)
6.6.4.1 Photopolymerisation Using Acrylamide Monomer
120(1)
6.6.4.2 Mechanism of Hologram Formation in Photopolymer
120(1)
6.6.4.3 Mathematical Models of Holographic Grating Formation in Acrylamide Photopolymer
121(3)
6.6.4.4 Single-beam Recording in Photopolymer
124(1)
6.6.4.5 Advances in Photopolymers for Holographic Recording
125(3)
6.6.5 Other Recording Materials
128(1)
References
128(2)
Problems
130(1)
7 Recording and Reconstruction in Practice
131(24)
7.1 Introduction
131(1)
7.2 Holographic Sensitivity
131(1)
7.3 Non-linear Effects
131(5)
7.3.1 Non-linearity in an Amplitude Hologram
132(3)
7.3.2 Non-linearity in Phase Holograms
135(1)
7.4 Grain Noise
136(4)
7.4.1 Reduction in Fringe Contrast
136(1)
7.4.2 Noise Gratings
137(3)
7.4.3 Measurement of Noise Spectrum
140(1)
7.5 The Speckle Effect
140(4)
7.5.1 The Origin of Speckle
140(1)
7.5.2 Speckle Size
141(1)
7.5.3 Speckle Contrast
142(2)
7.6 Signal-to-noise Ratio in Holography
144(1)
7.7 Experimental Evaluation of Holographic Characteristics
145(2)
7.7.1 Diffraction Efficiency
145(2)
7.7.2 Shrinkage
147(1)
7.8 Effects Arising from Dissimilarities between Reference Beams in Recording and Reconstruction
147(8)
7.8.1 Phase Conjugation Effects
149(1)
7.8.2 Reconstruction Using Non-Laser Light
149(1)
References
150(1)
Problems
150(5)
Section IV Applications
8 Holographic Displays
155(34)
8.1 Introduction
155(1)
8.2 Single-beam Holographic Display
155(2)
8.2.1 Spatial Filtering
156(1)
8.3 Split-beam Holographic Displays
157(2)
8.3.1 Control of Beam Ratio in Split-beam Holography
158(1)
8.3.1.1 Use of Beamsplitters
158(1)
8.3.1.2 Polarizing Beamsplitters and Halfwave Plates
158(1)
8.4 Benton Holograms
159(4)
8.4.1 Image Plane Holography
161(1)
8.4.2 Single-step Image Plane Rainbow Holography
161(1)
8.4.3 Blur in Reconstructed Images from Rainbow Holograms
162(1)
8.5 White Light Denisyuk Holograms
163(1)
8.6 Wide Field Holography
164(2)
8.7 Colour Holograms
166(2)
8.8 Edge-lit Holograms
168(3)
8.9 Large-format Holographic Displays
171(1)
8.10 Quantum Entanglement Holography
172(1)
8.11 Dynamic Three-dimensional Displays
173(8)
8.11.1 Light Field Displays
174(1)
8.11.2 Holographic Displays
174(1)
8.11.2.1 Photorefractive Polymer Systems
174(1)
8.11.2.2 Spatial Light Modulator-based Dynamic Holographic Displays
175(5)
8.11.2.3 Metasurfaces
180(1)
8.11.3 Tiled Holographic Displays Using LCSLMs
180(1)
8.12 Further Developments in SLM-based Holographic Systems
181(2)
8.12.1 Reduced Pixel Size
181(1)
8.12.2 Scanning Systems
182(1)
8.13 Dynamic Displays Using Speckle Fields
183(1)
8.14 Cascading SLMs for Complex Amplitude
184(5)
References
186(2)
Problems
188(1)
9 Other Imaging Applications
189(16)
9.1 Introduction
189(1)
9.2 Holographic Imaging of Three-Dimensional Spaces
189(2)
9.3 Further Applications of Phase Conjugation
191(5)
9.3.1 Lensless Image Formation
191(2)
9.3.2 Dispersion Compensation
193(1)
9.3.3 Distortion and Aberration Correction
193(3)
9.4 Multiple Imaging
196(1)
9.5 Total Internal Reflection and Evanescent Wave Holography
197(3)
9.6 Evanescent Waves in Diffracted Light
200(5)
9.6.1 Diffracted Evanescent Wave Holography
201(2)
References
203(1)
Problems
204(1)
10 Holographic Interferometry
205(22)
10.1 Introduction
205(1)
10.2 Basic Principle
205(1)
10.3 Phase Change Due to Object Displacement
206(1)
10.4 Fringe Localisation
206(2)
10.4.1 Pure Translation
206(1)
10.4.2 In-plane Rotation
207(1)
10.4.3 Out-of-plane Rotation
207(1)
10.5 Live Fringe Holographic Interferometry
208(1)
10.6 Frozen Fringe Holographic Interferometry
208(1)
10.7 Compensation for Rigid Body Motion Accompanying Loading
209(2)
10.8 Double Pulse Holographic Interferometry
211(1)
10.9 Holographic Interferometry of Vibrating Objects
211(3)
10.9.1 Time-averaged Holographic Interferometry
212(1)
10.9.2 Live Holographic Interferometry of a Vibrating Object
212(1)
10.9.3 Double Exposure with Phase Shift
213(1)
10.9.4 Frequency Modulation of the Reference Wave
213(1)
10.10 Stroboscopic Methods
214(1)
10.11 Surface Profilometry
215(3)
10.11.1 Surface Profiling by Change in Wavelength
215(1)
10.11.2 Refractive Index Method
216(1)
10.11.3 Change in Direction of Illumination
217(1)
10.12 Phase Conjugate Holographic Interferometry
218(1)
10.13 Fringe Analysis
218(1)
10.14 Speckle Pattern Interferometry
219(6)
10.14.1 Speckle Pattern Correlation Interferometry
220(1)
10.14.2 Electronic Speckle Pattern Interferometry
221(1)
10.14.2.1 Fringe Analysis in Electronic Speckle Pattern Interferometry
222(1)
10.14.2.2 Vibration Studies Using Electronic Speckle Pattern Interferometry
223(1)
10.14.2.3 Electronic Speckle Pattern Interferometry Systems
224(1)
10.14.3 Digital Speckle Shearing Interferometry
224(1)
10.15 Digital Holographic and Speckle Interferometry Using Infrared Lasers
225(2)
References
225(1)
Problems
226(1)
11 Holographic Optical Elements
227(28)
11.1 Introduction
227(1)
11.2 Diffraction Gratings
227(2)
11.3 Spectral Filters
229(4)
11.4 Lenses
233(3)
11.4.1 HOEs for Light-emitting Diodes
234(1)
11.4.2 Diffusers
235(1)
11.5 Beamsplitters and Beam Combiners
236(3)
11.5.1 Head-up Displays
236(1)
11.5.2 Beamsplitter and Combiner for an ESPI System
237(1)
11.5.3 Polarizing Beamsplitters
238(1)
11.6 Scanners
239(2)
11.7 Lighting Control and Solar Concentrators
241(2)
11.8 Multiplexing and Demultiplexing
243(1)
11.9 Optical Interconnects
243(3)
11.9.1 Holographic Interconnects
243(1)
11.9.1.1 Fan-out Devices
244(1)
11.9.1.2 Space Variant Interconnects
244(2)
11.10 Holographic Projection Screens
246(1)
11.11 Photonic Bandgap Devices
246(3)
11.12 Holographic Polymer Dispersed Liquid Crystal Devices
249(1)
11.13 Waveguiding HOEs
249(3)
11.14 Edge-lit HOEs
252(3)
References
253(1)
Problems
254(1)
12 Holographic Data Storage and Information Processing
255(26)
12.1 Introduction
255(1)
12.2 Holographic Data Storage Capacity
255(1)
12.3 Bit Format and Page Format
255(1)
12.4 Storage Media
256(1)
12.5 Multiplexing
257(8)
12.5.1 Angular Multiplexing
257(1)
12.5.2 Peristrophic Multiplexing
258(1)
12.5.3 Polytopic Multiplexing
259(1)
12.5.4 Shift Multiplexing
259(3)
12.5.5 Wavelength Multiplexing
262(1)
12.5.6 Phase-coded Reference Beam Multiplexing
262(1)
12.5.6.1 Diffuser-based Random Phase Coding
262(1)
12.5.6.2 Deterministic Phase Coding
263(2)
12.6 Phase-coded Data
265(1)
12.7 Error Avoidance
265(1)
12.8 Exposure Scheduling
266(2)
12.9 Data and Image Processing
268(4)
12.9.1 Associative Recall
268(1)
12.9.2 Data Processing with Optical Fourier Transforms
269(1)
12.9.2.1 Defect Detection
269(1)
12.9.2.2 Optical Character Recognition
270(1)
12.9.2.3 Joint Transform Correlation
271(1)
12.9.2.4 Addition and Subtraction
271(1)
12.9.2.5 Edge Enhancement
271(1)
12.9.2.6 Image Recovery
272(1)
12.10 Optical Logic
272(1)
12.11 Holographic Optical Neural Networks
273(2)
12.12 Magnetic Holographic Storage
275(1)
12.13 Quantum Holographic Data Storage
276(5)
References
277(1)
Problems
278(3)
13 Digital Holography
281(28)
13.1 Introduction
281(1)
13.2 Spatial Frequency Bandwidth and Sampling Requirements
281(1)
13.2.1 Bandwidth in Digital Fourier Holography
281(1)
13.2.2 Bandwidth in Digital Fresnel Holography
282(1)
13.3 Recording and Numerical Reconstruction
282(5)
13.3.1 The Fresnel Method
283(2)
13.3.2 The Convolution Method
285(1)
13.3.3 The Angular Spectrum Method
286(1)
13.4 Suppression of the Zero Order and the Twin Image
287(3)
13.4.1 Removal of Zero-Order Term by Image Processing
288(1)
13.4.2 Shuttering
288(1)
13.4.3 Phase Shift Methods
288(2)
13.4.4 Heterodyne Method
290(1)
13.5 Improving the Resolution in Digital Holography
290(1)
13.6 Digital Holographic Microscopy
291(8)
13.6.1 Multiple Wavelength Method
292(1)
13.6.2 Optical Coherence Tomography and Digital Holographic Microscopy
293(1)
13.6.3 Optical Scanning and Non-scanning Digital Holographic Microscopy
294(3)
13.6.4 Wavelength-coded Microscopy
297(2)
13.6.5 Autofocusing in Reconstruction
299(1)
13.7 Other Applications of Digital Holography
299(1)
13.8 Digital Holographic Shearing Microscopy
300(1)
13.9 Single-pixel Imaging and Single-pixel Digital Holography
301(8)
13.9.1 Introduction
301(1)
13.9.2 Single-pixel Imaging
302(1)
13.9.3 Compressive Single-pixel Imaging
303(1)
13.9.4 Imaging through Diffusing Media
303(2)
13.9.5 Single-pixel Holography
305(1)
References
306(1)
Problems
307(2)
14 Computer-Generated Holograms
309(20)
14.1 Introduction
309(1)
14.2 Methods of Representation
309(5)
14.2.1 Binary Detour - Phase Method
309(3)
14.2.2 TheKinoform
312(1)
14.2.3 Referenceless Off-axis Computed Hologram (ROACH)
313(1)
14.3 Three-dimensional Objects
314(1)
14.4 Optical Testing
315(3)
14.4.1 Optical Testing Using Computer-generated Holograms
315(1)
14.4.2 Computer-generated Interferograms
315(3)
14.5 Optical Traps and Computer-generated Holographic Optical Tweezers
318(11)
14.5.1 Optical Trapping
318(1)
14.5.2 Holographic Optical Tweezers
319(2)
14.5.3 Other Forms of Optical Traps
321(1)
14.5.3.1 Bessel Mode
321(2)
14.5.3.2 Helical Modes
323(2)
14.5.4 Applications of Holographic Optical Tweezers
325(1)
References
326(1)
Problems
327(2)
15 Holography and the Behaviour of Light
329(12)
15.1 Introduction
329(1)
15.2 Theory of Light-in-Flight Holography
329(1)
15.3 Reflection and Other Phenomena
330(1)
15.4 Extending the Record
331(1)
15.5 Applications of Light-in-Flight Holography
332(9)
15.5.1 Contouring
332(3)
15.5.2 Particle Velocimetry
335(1)
15.5.3 Testing of Optical Fibres
335(1)
15.5.4 Imaging through Scattering Media
335(3)
References
338(1)
Problems
339(2)
16 Polarization Holography
341(14)
16.1 Introduction
341(1)
16.2 Description of Polarized Light
341(2)
16.3 Jones Vectors and Matrix Notation
343(1)
16.4 Stokes Parameters
344(1)
16.5 Photoinduced Anisotropy
345(1)
16.6 Transmission Polarization Holography
346(4)
16.6.1 Linearly Polarized Recording Waves
346(1)
16.6.2 Circularly Polarized Recording Waves
347(2)
16.6.2.1 Polarization Diffraction Grating Stokesmeter
349(1)
16.6.3 Recording Waves with Parallel Linear Polarizations
349(1)
16.7 Reflection Polarization Holographic Gratings
350(1)
16.8 Photoanisotropic Recording Materials for Polarization Holography
351(1)
16.8.1 Surface Relief
351(1)
16.9 Applications of Polarization Holography
352(3)
16.9.1 Holographic Display
352(1)
16.9.2 Polarization Holographic Data Storage
353(1)
16.9.3 Multiplexing and Logic
353(1)
16.9.4 Electrically Switchable Devices
353(1)
References
353(1)
Problems
354(1)
17 Holographic Sensing
355(18)
17.1 Introduction
355(1)
17.2 Basic Principles
355(1)
17.3 Theory
355(3)
17.3.1 Surface Relief Gratings
355(2)
17.3.2 Volume Phase Transmission Holographic Gratings
357(1)
17.3.3 Volume Phase Reflection Holographic Gratings
357(1)
17.4 Sensors Based on Silver Halide and Related Materials
358(1)
17.5 Photopolymer-based Sensors
358(5)
17.5.1 Humidity Temperature, and Pressure Sensing
359(1)
17.5.1.1 Humidity
359(1)
17.5.1.2 Hybrid Grating-Cantilever Systems for Humidity Sensing
360(1)
17.5.1.3 Temperature
360(1)
17.5.1.4 Pressure
361(1)
17.5.2 Nanozeolite Doped Photopolymer Sensors
361(2)
17.6 Other Holographic Sensors and Sensing Mechanisms
363(1)
17.7 Sensing by Hologram Formation
364(2)
17.8 Wavefront Sensing
366(7)
17.8.1 Aberration Modes
368(1)
17.8.2 Holographic Wavef ront Sensing
368(1)
17.8.3 Wavefront Sensing Using the Speckle Memory Effect
369(1)
References
369(2)
Problems
371(2)
18 Ultraviolet and Infrared Holography
373(8)
18.1 Introduction
373(1)
18.2 UV Holography
373(2)
18.3 IR Holography
375(6)
References
378(3)
19 Holographic Authentication and Encryption
381(8)
19.1 Introduction
381(1)
19.2 Authentication Using a Hologram
381(2)
19.3 Authentication of Mass-produced Holograms
383(1)
19.4 Mass Production of Serialised Holograms
384(1)
19.5 Encryption of Single Holograms
384(1)
19.6 SLM-based Encryption
385(1)
19.7 Space-based Techniques
385(1)
19.8 Phase Shift-based Decryption of Digital Holograms
386(3)
References
387(1)
Problems
388(1)
20 X-ray Holography
389(10)
20.1 Introduction
389(1)
20.2 Single Energy X-ray Holography
389(1)
20.3 Multiple Energy X-ray Fluorescence Holography
390(1)
20.4 Optical Components
391(2)
20.4.1 Mirrors
391(1)
20.4.2 Fresnel Zone Plates
392(1)
20.4.3 Refractive Components
393(1)
20.5 In-line (Gabor) X-ray Holography
393(1)
20.6 Fourier Holography and Lensless Fourier Holography
394(5)
References
397(1)
Problem
397(2)
21 Electron and Neutron Holography
399(10)
21.1 Introduction
399(1)
21.2 The Transmission Electron Microscope
399(3)
21.3 Holography Using a TEM
402(2)
21.4 Electron Holography and the Magnetic Aharonov-Bohm Effect
404(2)
21.5 Neutron Holography
406(3)
References
406(3)
22 Acoustic Holography
409(8)
22.1 Introduction
409(1)
22.2 Recording Materials and Methods
409(1)
22.3 Hologram Plane Scanning
409(2)
22.4 Applications of Acoustic Holography
411(6)
22.4.1 Non-destructive Testing
411(1)
22.4.2 Medical Imaging
411(1)
22.4.3 Seismology
411(1)
22.4.4 Holographic Acoustic Tweezers
412(3)
References
415(1)
Problems
416(1)
Appendix A 417(4)
Appendix B 421(2)
Index 423
Vincent Toal was formerly Director of the Centre for Industrial and Engineering Optics and Head of the School of Physics at Dublin Institute of Technology, now the Technological University Dublin. He gained the BSc degree in Physics and Mathematics from the National University of Ireland, an MSc degree in Optoelectronics at Queens University, Belfast and a PhD in Electronic Engineering at the University of Surrey. He is a member of Optica with research interests in optics and holographic applications.