Muutke küpsiste eelistusi

E-raamat: Introduction to Sustainable Energy Transformation [Taylor & Francis e-raamat]

  • Formaat: 386 pages, 29 Tables, black and white; 93 Line drawings, black and white; 93 Illustrations, black and white
  • Ilmumisaeg: 19-Nov-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003036982
  • Taylor & Francis e-raamat
  • Hind: 327,75 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 468,21 €
  • Säästad 30%
  • Formaat: 386 pages, 29 Tables, black and white; 93 Line drawings, black and white; 93 Illustrations, black and white
  • Ilmumisaeg: 19-Nov-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003036982
This textbook provides an accessible introduction to various energy transformation technologies and their influences on the environment. Here the energy transformation is understood as any physical process induced by humans, in which energy is intentionally transformed from one form to another.

This book provides an accessible introduction to the subject: covering the theory, principles of design, operation, and efficiency of the systems in addition to discerning concepts such as energy, entropy, exergy, efficiency, and sustainability.

It is not assumed that readers have any previous exposure to such concepts as laws of thermodynamics, entropy, exergy, fluid mechanics or heat transfer, and is therefore an ideal textbook for advanced undergraduate students.

Key features:





Represents a complete source of information on sustainable energy transformation systems and their externalities. Includes all existing and major emerging technologies in the field. Chapters include numerous examples and problems for further learning opportunities.
Preface xvii
Section I Energy Forms and Resources
Chapter 1 Fundamental Concepts
3(16)
1.1 Units and Notation
3(2)
1.1.1 Units
4(1)
1.1.2 Notation
4(1)
1.1.3 Atomic and Nuclear Nomenclature
4(1)
1.2 Structure of Matter
5(4)
1.2.1 Matter
5(2)
1.2.2 The Atom
7(1)
1.2.3 Sources of Nuclear and Atomic Information
8(1)
1.3 Energy in Matter
9(8)
1.3.1 The Equivalence of Mass and Energy
9(1)
1.3.2 Internal Energy
10(3)
1.3.3 Energy in Chemical Reactions
13(1)
1.3.4 Energy in Nuclear Reactions
14(3)
Problems
17(2)
Chapter 2 Energy Forms, Reserves, Supply, and Consumption
19(20)
2.1 Energy Forms
19(2)
2.1.1 Primary and Secondary Energy
19(1)
2.1.2 Energy Carrier
20(1)
2.1.3 Final Energy
20(1)
2.1.4 Useful Energy
20(1)
2.1.5 Electricity
20(1)
2.1.6 Heat
20(1)
2.2 Reserves of Energy-Containing Minerals
21(1)
2.2.1 Fossil Fuels
21(1)
2.2.2 Uranium
21(1)
2.2.3 Other Minerals
22(1)
2.3 Energy Supply
22(5)
2.3.1 Crude Oil
23(1)
2.3.2 Coal
23(1)
2.3.3 Natural Gas
24(1)
2.3.4 Biofuels and Waste
25(1)
2.3.5 Nuclear
26(1)
2.3.6 Hydro
26(1)
2.3.7 Wind
27(1)
2.3.8 Solar
27(1)
2.4 Power Sector
27(1)
2.5 Energy Consumption
28(9)
2.5.1 Aluminium Production
28(1)
2.5.2 Cement Production
29(1)
2.5.3 Iron and Steel
30(1)
2.5.4 Pulp and Paper
31(1)
2.5.5 Chemicals
31(1)
2.5.6 Energy Services
31(5)
2.5.7 Energy Efficiency and Environment Protection
36(1)
Problems
37(2)
Chapter 3 Elements of Sustainability
39(8)
3.1 Sustainability Goals
39(1)
3.2 Environment
40(3)
3.2.1 Atmosphere
40(3)
3.2.2 Biosphere
43(1)
3.2.3 Hydrosphere
43(1)
3.2.4 Lithosphere
43(1)
3.3 Economic Sustainability
43(2)
3.3.1 Role of Economy in Sustainability
44(1)
3.3.2 Ways to Promote Environmental Protection
44(1)
3.3.3 Climate Change
45(1)
Problems
45(2)
Chapter 4 Mechanical and Electromagnetic Energy
47(16)
4.1 Forces and Fields
47(2)
4.1.1 A Force
47(1)
4.1.2 A Field
48(1)
4.2 Mechanical Energy
49(5)
4.2.1 Kinetic Energy
49(1)
4.2.2 Potential Energy
50(1)
4.2.3 Work and Power
51(1)
4.2.4 Linear and Angular Momentum
51(1)
4.2.5 Mechanical Energy Losses
52(1)
4.2.6 Mechanical Energy Storage
53(1)
4.3 Electromagnetic Energy
54(7)
4.3.1 Electrostatics
54(1)
4.3.2 Electric Current
55(2)
4.3.3 Magnetism
57(1)
4.3.4 Induction
58(1)
4.3.5 Electrical Devices
59(1)
4.3.6 Electromagnetic Energy Losses
60(1)
4.3.7 Electromagnetic Energy Storage
60(1)
Problems
61(2)
Chapter 5 Biological and Chemical Energy
63(10)
5.1 Photosynthesis
63(2)
5.1.1 Mechanisms of Photosynthesis
64(1)
5.1.2 Photosynthesis Efficiency
64(1)
5.2 Food Energy
65(1)
5.2.1 Food Production
65(1)
5.2.2 Fertilizers
66(1)
5.3 Bioenergy
66(2)
5.3.1 Biomass
66(1)
5.3.2 Biogas
67(1)
5.3.3 Ethanol
67(1)
5.3.4 Biodiesel
68(1)
5.4 Fossil Fuels
68(1)
5.4.1 Coal
68(1)
5.4.2 Petroleum
69(1)
5.4.3 Natural Gas
69(1)
5.5 Combustion
69(3)
5.5.1 Combustion of Gasoline
70(1)
5.5.2 Combustion of Ethanol
70(1)
5.5.3 Combustion of Coal
71(1)
5.5.4 Combustion of Hydrogen
71(1)
Problems
72(1)
Chapter 6 Nuclear Energy
73(12)
6.1 Binding Energy of a Nucleus
73(2)
6.2 Energy Transformation in Stars
75(1)
6.3 Characteristics of the Nuclear Fission
76(4)
6.3.1 Fission Products
76(1)
6.3.2 Neutron Emission
77(2)
6.3.3 Energy Released in Fission Reactions
79(1)
6.4 Nuclear Fusion
80(1)
6.5 Radioactive Decay
81(1)
Problems
82(3)
Chapter 7 Thermal Energy
85(36)
7.1 Introductory Definitions
85(2)
7.1.1 Thermodynamic Control Systems
85(1)
7.1.2 State Parameters
86(1)
7.1.3 Thermodynamic Equilibrium
86(1)
7.1.4 Thermodynamic Diagrams
86(1)
7.1.5 Thermodynamic Processes
86(1)
7.1.6 Thermodynamic Cycles
87(1)
7.2 The Laws of Thermodynamics
87(4)
7.2.1 Zeroth Law of Thermodynamics
87(1)
7.2.2 First Law of Thermodynamics
87(4)
7.2.3 Second Law of Thermodynamics
91(1)
7.3 Equation of State
91(6)
7.3.1 The Ideal Gas Law
92(1)
7.3.2 Ideal Gas Mixtures
92(1)
7.3.3 Van der Waals Equation of State
93(1)
7.3.4 Principle of Corresponding States
93(1)
7.3.5 Phase Change
94(3)
7.4 Thermodynamic Processes in Heat Engines
97(6)
7.4.1 Isothermal Process
97(1)
7.4.2 Isochoric Process
98(1)
7.4.3 Isobaric Process
99(2)
7.4.4 Adiabatic Process
101(2)
7.4.5 Polytropic Process
103(1)
7.5 Thermodynamic Cycles
103(6)
7.5.1 Carnot Cycle
103(2)
7.5.2 Rankine Cycle
105(1)
7.5.3 Brayton Cycle
106(1)
7.5.4 Stirling Cycle
106(2)
7.5.5 Kalina Cycle
108(1)
7.5.6 Combined Cycle
109(1)
7.6 Entropy Balance
109(3)
7.7 Principle of Maximum Work
112(2)
7.8 Exergy Balance
114(3)
7.8.1 Mechanical and Electrical Exergy
115(1)
7.8.2 Thermal Exergy
115(1)
7.8.3 Chemical Exergy
116(1)
7.8.4 Total Exergy of Substance
116(1)
7.8.5 Exergy of Heat Reservoirs
116(1)
7.8.6 Exergy Losses
117(1)
Problems
117(4)
Chapter 8 Fluid Flow in Energy Systems
121(34)
8.1 Generalized Conservation Law
121(4)
8.1.1 General Integral Conservation Equation
123(1)
8.1.2 Stationary Control Volume
123(1)
8.1.3 Moving Control Volume
124(1)
8.1.4 Material Volume
124(1)
8.1.5 Local Differential Formulation
124(1)
8.2 Closure Relationships
125(2)
8.2.1 Total Stress Tensor
125(2)
8.2.2 Heat Flux
127(1)
8.2.3 Entropy Generation
127(1)
8.3 Space-Averaged Flow in a Tube
127(4)
8.3.1 Averaged Mass Conservation Equation
130(1)
8.3.2 Averaged Momentum Conservation Equation
130(1)
8.4 Internal Flows
131(9)
8.4.1 Average Flow Parameters
133(1)
8.4.2 Wall Shear Stress and Friction Pressure Loss
134(3)
8.4.3 Macroscopic Energy Balance for Adiabatic Channel
137(1)
8.4.4 Local Pressure Losses
138(2)
8.5 External Flows
140(1)
8.6 Multiphase Flows
141(12)
8.6.1 Notation and Nomenclature
141(2)
8.6.2 Flow Patterns
143(1)
8.6.3 Homogeneous Equilibrium Model
144(5)
8.6.4 Homogeneous Relaxation Model
149(1)
8.6.5 Separated Flow Model
150(1)
8.6.6 Drift Flux Model
150(2)
8.6.7 Two-Fluid Model
152(1)
Problems
153(2)
Chapter 9 Heat Transfer in Energy Systems
155(32)
9.1 Governing Equations
155(1)
9.2 Conduction
156(9)
9.2.1 Steady-State Heat Conduction
157(7)
9.2.2 Transient Heat Conduction
164(1)
9.3 Convection
165(7)
9.3.1 Forced Convection
166(3)
9.3.2 Natural Convection
169(3)
9.4 Boiling
172(8)
9.4.1 Nucleation and Ebullition Cycle
173(1)
9.4.2 Pool Boiling
173(2)
9.4.3 Flow Boiling
175(1)
9.4.4 Onset of Nucleate Boiling
176(1)
9.4.5 Subcooled Boiling
176(2)
9.4.6 Saturated Boiling
178(2)
9.5 Boiling Crisis
180(1)
9.5.1 Pool Boiling Crisis
180(1)
9.5.2 Flow Boiling Crisis
180(1)
9.6 Post-Boiling-Crisis Heat Transfer
181(1)
9.7 Radiation
182(1)
Problems
183(4)
Section II Energy Transformation Systems
Chapter 10 Efficiency of Energy Transformation
187(8)
10.1 Power Generation Technologies
187(1)
10.2 Energy Efficiency
188(4)
10.2.1 First-Law Efficiency
188(3)
10.2.2 Second-Law Efficiency
191(1)
10.3 Energy Conservation and Storage
192(1)
Problems
193(2)
Chapter 11 Thermal Power
195(16)
11.1 Introduction
195(1)
11.2 Condensing Power
196(10)
11.2.1 Schematic of a Basic System
196(5)
11.2.2 Basic System Efficiency
201(1)
11.2.3 Efficiency Improvements
202(3)
11.2.4 System Modeling
205(1)
11.3 Stationary Gas Turbines
206(1)
11.4 Combined Cycle Power
207(1)
11.5 Cogeneration and Trigeneration
208(1)
Problems
209(2)
Chapter 12 Moving Water Power
211(10)
12.1 Hydropower
211(7)
12.1.1 Hydropower Potential
212(1)
12.1.2 Types of Water Turbines
212(1)
12.1.3 Types of Hydropower Plants
213(3)
12.1.4 Analysis of Water Turbine Efficiency
216(2)
12.2 Marine Current Power
218(1)
12.3 Wave Power
218(1)
12.4 Tidal Power
219(1)
Problems
220(1)
Chapter 13 Wind Power
221(16)
13.1 Energy of Moving Air
221(1)
13.2 Wind Power Machines
222(2)
13.2.1 Horizontal-Axis Wind Turbines
223(1)
13.2.2 Darrieus turbines
223(1)
13.2.3 Savonius Turbines
224(1)
13.3 Wind Power Resources
224(1)
13.4 Wind Characteristics
225(5)
13.4.1 Temporal Variability of Wind
225(1)
13.4.2 Global Circulation in Atmosphere
226(1)
13.4.3 Synoptic Scale Winds
226(1)
13.4.4 Diurnal Wind Changes
227(1)
13.4.5 Modeling Wind Speed Variation
227(2)
13.4.6 Wind Rose-Wind Direction and Intensity
229(1)
13.5 Wind Turbine Aerodynamics
230(2)
13.5.1 Maximum Power of a Wind Turbine
231(1)
13.5.2 Wind Turbine Efficiency
232(1)
13.6 Environmental Effects of Wind Power
232(3)
13.6.1 Noise
232(2)
13.6.2 Shadow Flicker
234(1)
13.6.3 Visual Impact
234(1)
13.6.4 Bird Collisions
234(1)
13.6.5 Site Planning
235(1)
Problems
235(2)
Chapter 14 Solar Power
237(18)
14.1 Solar Radiation on Earth
237(5)
14.1.1 Energy of the Sunlight
238(1)
14.1.2 Sun Position
239(3)
14.1.3 Components of Solar Radiation
242(1)
14.1.4 Solar Radiation on Inclined Surfaces
242(1)
14.2 Solar Thermal Power
242(4)
14.2.1 Absorption of Radiation
242(1)
14.2.2 Collectors
243(2)
14.2.3 Concentrators
245(1)
14.3 Photovoltaic Solar Cells
246(7)
14.3.1 Theory
246(5)
14.3.2 Silicon Solar Cells
251(1)
14.3.3 Advanced Solar Cells
252(1)
14.3.4 Photovoltaic Modules
253(1)
Problems
253(2)
Chapter 15 Nuclear Power
255(36)
15.1 Introduction
255(16)
15.1.1 Neutron Reactions
255(8)
15.1.2 Neutron Flux
263(5)
15.1.3 The Neutron Cycle in Thermal Reactor
268(3)
15.2 Reactor Analysis and Design
271(1)
15.2.1 Steady-State Reactor Physics
271(1)
15.2.2 Thermal-Hydraulic Design
272(1)
15.3 Reactor Kinetics and Dynamics
272(2)
15.4 Fuel Composition Changes
274(4)
15.4.1 Fuel Conversion and Breeding
274(1)
15.4.2 Fission Product Poisoning
275(3)
15.5 Reactor Types
278(1)
15.5.1 Currently Operable Reactors
278(1)
15.5.2 Advanced Reactors
279(1)
15.6 Nuclear Fuel Cycle
279(4)
15.7 Nuclear Power Safety
283(1)
15.8 Fusion Reactors and Other Technologies
284(3)
15.8.1 Potential Fusion Reactions
284(1)
15.8.2 Fusion Power Density
284(1)
15.8.3 Plasma Confinement Methods
285(1)
15.8.4 Fusion Performance Criteria
286(1)
15.8.5 IThR
286(1)
15.8.6 Other Technologies
287(1)
Problems
287(4)
Section III External Effects
Chapter 16 Energy and Environment
291(14)
16.1 Climate
291(1)
16.2 Greenhouse effect
292(2)
16.3 Earth energy imbalance
294(1)
16.4 CO2 Concentration
295(1)
16.5 Greenhouse Gas Emissions
296(2)
16.6 Air Pollution
298(2)
16.7 Water Use and Contamination
300(1)
16.8 Land Use
301(1)
16.9 Mineral Use
302(1)
Problems
303(2)
Chapter 17 Risks, Safety, and Cost Analysis
305(16)
17.1 Risk Analysis
305(4)
17.1.1 Risk of Energy Systems
306(1)
17.1.2 Probabilistic Risk Assessment
306(3)
17.2 Hazards in Energy Systems
309(4)
17.2.1 Solar Power
310(1)
17.2.2 Wind Power
310(1)
17.2.3 Hydropower
311(1)
17.2.4 Combustion-Based Thermal Power
311(1)
17.2.5 Geothermal Power
312(1)
17.2.6 Nuclear Power
312(1)
17.3 Cost Analysis
313(7)
17.3.1 Calculation Methods
313(5)
17.3.2 Levelized Cost of Energy
318(2)
Problems
320(1)
Appendix A Notation 321(4)
A.1 Number Notation
321(1)
A.2 Nomenclature and Symbols
321(4)
Appendix B Constants 325(4)
B.1 Universal Constants
325(1)
B.2 Standard Conditions
325(4)
Appendix C Data 329(14)
C.1 Atomic Data of Chemical Elements
329(6)
C.2 Water-Steam Property Data
335(8)
C.2.1 Sub-Cooled and Superheated Conditions
335(2)
C.2.2 Saturated Conditions
337(6)
Appendix D Mathematical Tools 343(10)
D.1 Coordinate Systems
343(2)
D.1.1 Cartesian Coordinates
343(1)
D.1.2 Cylindrical Polar Coordinates
343(1)
D.1.3 Spherical Polar Coordinates
344(1)
D.2 Scalar, Vector, and Tensor Fields
345(1)
D.3 Differential Operators
346(1)
D.3.1 Nabla
346(1)
D.3.2 Gradient
346(1)
D.3.3 Divergence and Curl
346(1)
D.3.4 Laplacian
346(1)
D.4 Integral Theorems
346(2)
D.4.1 Divergence Theorem
346(1)
D.4.2 Leibniz's Rules
347(1)
D.4.3 Reynolds Transport Theorem
347(1)
D.4.4 Divergence Theorem
348(1)
D.5 Conservation Equations in Fluid Mechanics
348(3)
D.5.1 Mass conservation equation
348(1)
D.5.2 Momentum conservation equations
348(2)
D.5.3 Energy conservation equations
350(1)
D.6 Special Functions
351(2)
D.6.1 Bessel Functions
351(1)
D.6.2 Gamma Function
351(2)
Appendix E Units 353(8)
E.1 SI Units
353(2)
E.1.1 Base SI Units
353(1)
E.1.2 Derived, Supplementary, and Temporary SI Units
354(1)
E.2 SI Prefixes and Conversion Factors
355(6)
References 361(4)
Index 365
Henryk Anglart is a professor of Nuclear Engineering at the KTH Royal Institute of Technology, Stockholm, Sweden, and at the Warsaw University of Technology (WUT), Warsaw, Poland. He received his MSc from WUT and his PhD from the Rensselaer Polytechnic Institute, Troy, NY. After his eighteen-year career as a research and development engineer at Westinghouse in Sweden, he accepted a tenure position at KTH, where he has supervised many PhD students and post-doctoral fellows, and has taught several courses in nuclear engineering. In addition to research and teaching, prof. Henryk Anglart was serving for a long time as head of Reactor Technology Division and Deputy Director of the Physics Department. He is currently a Director of Nuclear Technology Center at KTH. Prof. Henryk Anglart authored and co-authored over 200 journal, conference and other scientific publications. He is also an author of three textbooks used in teaching of nuclear engineering courses at WUT and KTH.