Preface |
|
xi | |
Author |
|
xiii | |
Symbols |
|
xv | |
1 Review of Sets, Functions, and Proofs |
|
1 | (14) |
|
|
1 | (4) |
|
1.1.1 Some Special Sets of Numbers |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (3) |
|
|
8 | (4) |
|
|
8 | (2) |
|
|
10 | (2) |
|
1.4 How to Read This Book |
|
|
12 | (3) |
2 Introduction: A Number Game |
|
15 | (6) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (2) |
3 Groups |
|
21 | (16) |
|
|
21 | (1) |
|
|
21 | (2) |
|
3.3 Groups: Definition and Some Examples |
|
|
23 | (5) |
|
3.4 First Results about Groups |
|
|
28 | (6) |
|
|
34 | (3) |
4 Subgroups |
|
37 | (10) |
|
|
37 | (3) |
|
4.2 The Subgroup Generated by a Set |
|
|
40 | (3) |
|
|
43 | (4) |
5 Symmetry |
|
47 | (8) |
|
|
47 | (1) |
|
|
48 | (5) |
|
|
53 | (2) |
6 Free Groups |
|
55 | (2) |
|
6.1 The Free Group Generated by a Set |
|
|
55 | (1) |
|
|
56 | (1) |
7 Group Homomorphisms |
|
57 | (16) |
|
7.1 Relationships between Groups |
|
|
57 | (3) |
|
7.2 Kernels: How Much Did We Lose? |
|
|
60 | (4) |
|
|
64 | (2) |
|
|
66 | (3) |
|
|
69 | (4) |
8 Lagrange's Theorem |
|
73 | (8) |
|
8.1 Cosets and Partitions |
|
|
73 | (2) |
|
|
75 | (2) |
|
8.3 Reaping the Consequences |
|
|
77 | (1) |
|
|
78 | (3) |
9 Special Types of Homomorphisms |
|
81 | (10) |
|
|
81 | (4) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (4) |
10 Making Groups |
|
91 | (8) |
|
|
91 | (1) |
|
|
91 | (4) |
|
10.3 Room for Everyone Inside |
|
|
95 | (1) |
|
|
96 | (3) |
11 Rings |
|
99 | (14) |
|
11.1 A New Type of Structure |
|
|
99 | (2) |
|
|
101 | (2) |
|
11.3 Ring Homomorphisms, Ideals, and Quotient Rings |
|
|
103 | (7) |
|
|
110 | (3) |
12 Results on Commutative Rings |
|
113 | (12) |
|
|
113 | (1) |
|
|
113 | (2) |
|
12.3 The Ideal Generated by a Set |
|
|
115 | (4) |
|
12.4 Fields and Maximal Ideals |
|
|
119 | (3) |
|
|
122 | (3) |
13 Vector Spaces |
|
125 | (16) |
|
|
125 | (1) |
|
13.2 Abstract Vector Spaces |
|
|
126 | (3) |
|
13.3 Bases: Generalized Coordinate Systems |
|
|
129 | (7) |
|
|
136 | (5) |
14 Polynomial Rings |
|
141 | (12) |
|
14.1 Polynomials Over a Commutative Ring |
|
|
141 | (6) |
|
14.2 Polynomials Over a Field |
|
|
147 | (3) |
|
|
150 | (3) |
15 Field Theory |
|
153 | (16) |
|
|
153 | (6) |
|
|
159 | (6) |
|
|
165 | (4) |
16 Galois Theory |
|
169 | (16) |
|
|
169 | (4) |
|
16.2 Separable Extensions |
|
|
173 | (3) |
|
|
176 | (2) |
|
|
178 | (4) |
|
|
182 | (3) |
17 Direct Sums and Direct Products |
|
185 | (12) |
|
|
185 | (1) |
|
|
185 | (5) |
|
|
190 | (4) |
|
|
194 | (3) |
18 The Structure of Finite Abelian Groups |
|
197 | (14) |
|
|
197 | (1) |
|
|
197 | (2) |
|
18.3 Splitting into p-Subgroups |
|
|
199 | (2) |
|
18.4 Structure of Abelian p-Groups |
|
|
201 | (6) |
|
18.5 The Fundamental Theorem |
|
|
207 | (1) |
|
|
208 | (3) |
19 Group Actions |
|
211 | (12) |
|
19.1 Groups Acting on Sets |
|
|
211 | (4) |
|
19.2 Reaping the Consequences |
|
|
215 | (4) |
|
|
219 | (4) |
20 Learning from Z |
|
223 | (20) |
|
|
223 | (1) |
|
|
223 | (5) |
|
20.3 Unique Factorization |
|
|
228 | (10) |
|
|
238 | (5) |
21 The Problems of the Ancients |
|
243 | (20) |
|
|
243 | (1) |
|
21.2 Constructible Numbers |
|
|
243 | (6) |
|
21.3 Constructible Regular Polygons |
|
|
249 | (10) |
|
|
259 | (4) |
22 Solvability of Polynomial Equations by Radicals |
|
263 | (24) |
|
|
263 | (2) |
|
22.2 Solvable Polynomials |
|
|
265 | (3) |
|
|
268 | (7) |
|
22.4 Galois Groups in the Generic Case |
|
|
275 | (2) |
|
22.5 Which Groups Are Solvable? |
|
|
277 | (3) |
|
|
280 | (1) |
|
|
280 | (7) |
23 Projects |
|
287 | (78) |
|
|
287 | (4) |
|
|
291 | (5) |
|
|
296 | (4) |
|
23.4 Some Category Theory |
|
|
300 | (4) |
|
23.5 Linear Algebra: Change of Basis |
|
|
304 | (2) |
|
23.6 Linear Algebra: Determinants |
|
|
306 | (7) |
|
23.7 Linear Algebra: Eigenvalues |
|
|
313 | (5) |
|
23.8 Linear Algebra: Rotations |
|
|
318 | (12) |
|
|
330 | (5) |
|
|
335 | (4) |
|
|
339 | (4) |
|
|
343 | (4) |
|
23.13 Perfect Numbers and Lucas's Test |
|
|
347 | (8) |
|
|
355 | (10) |
Bibliography |
|
365 | (2) |
Index |
|
367 | |