Preface |
|
xi | |
|
From CAD and FEA to Isogeometric Analysis: An Historical Perspective |
|
|
1 | (18) |
|
|
1 | (7) |
|
The need for isogeometric analysis |
|
|
1 | (6) |
|
|
7 | (1) |
|
The evolution of FEA basis functions |
|
|
8 | (4) |
|
The evolution of CAD representations |
|
|
12 | (4) |
|
Things you need to get used to in order to understand NURBS-based isogeometric analysis |
|
|
16 | (3) |
|
|
18 | (1) |
|
NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation |
|
|
19 | (50) |
|
|
19 | (28) |
|
|
19 | (2) |
|
|
21 | (7) |
|
|
28 | (8) |
|
|
36 | (11) |
|
Non-Uniform Rational B-Splines |
|
|
47 | (5) |
|
The geometric point of view |
|
|
47 | (3) |
|
The algebraic point of view |
|
|
50 | (2) |
|
|
52 | (2) |
|
Generating a NURBS mesh: a tutorial |
|
|
54 | (11) |
|
Preliminary considerations |
|
|
56 | (3) |
|
Selection of polynomial orders |
|
|
59 | (1) |
|
Selection of knot vectors |
|
|
60 | (1) |
|
Selection of control points |
|
|
61 | (4) |
|
|
65 | (4) |
|
Appendix 2.A: Data for the bent pipe |
|
|
66 | (2) |
|
|
68 | (1) |
|
NURBS as a Basis for Analysis: Linear Problems |
|
|
69 | (40) |
|
The isoparametric concept |
|
|
69 | (3) |
|
Defining functions on the domain |
|
|
71 | (1) |
|
Boundary value problems (BVPs) |
|
|
72 | (1) |
|
|
72 | (12) |
|
|
73 | (5) |
|
|
78 | (3) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
84 | (3) |
|
Dirichlet boundary conditions |
|
|
84 | (2) |
|
Neumann boundary conditions |
|
|
86 | (1) |
|
Robin boundary conditions |
|
|
86 | (1) |
|
Multiple patches revisited |
|
|
87 | (5) |
|
|
87 | (4) |
|
|
91 | (1) |
|
Comparing isogeometric analysis with classical finite element analysis |
|
|
92 | (17) |
|
|
94 | (3) |
|
Similarities and differences |
|
|
97 | (1) |
|
Appendix 3.A: Shape function routine |
|
|
97 | (6) |
|
Appendix 3.B: Error estimates |
|
|
103 | (3) |
|
|
106 | (3) |
|
|
109 | (40) |
|
Formulating the equations of elastostatics |
|
|
110 | (6) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (3) |
|
Infinite plate with circular hole under constant in-plane tension |
|
|
116 | (4) |
|
Thin-walled structures modeled as solids |
|
|
120 | (29) |
|
Thin Cylindrical shell with fixed ends subjected to constant internal pressure |
|
|
120 | (3) |
|
The shell obstacle course |
|
|
123 | (8) |
|
|
131 | (5) |
|
Hemispherical shell with a stiffener |
|
|
136 | (6) |
|
Appendix 4.A: Geometrical data for the hemispherical shell |
|
|
142 | (1) |
|
Appendix 4.B: Geometrical data for a cylindrical pipe |
|
|
142 | (2) |
|
Appendix 4.C: Element assembly routine |
|
|
144 | (3) |
|
|
147 | (2) |
|
Vibrations and Wave Propagation |
|
|
149 | (36) |
|
Longitudinal vibrations of an elastic rod |
|
|
149 | (15) |
|
|
149 | (2) |
|
|
151 | (4) |
|
Analytically computing the discrete spectrum |
|
|
155 | (4) |
|
|
159 | (5) |
|
Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam |
|
|
164 | (1) |
|
Transverse vibrations of an elastic membrane |
|
|
165 | (3) |
|
Linear and nonlinear parameterizations revisited |
|
|
166 | (1) |
|
|
166 | (2) |
|
Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate |
|
|
168 | (1) |
|
Vibrations of a clamped thin circular plate using three-dimensional solid elements |
|
|
169 | (3) |
|
|
170 | (2) |
|
|
172 | (1) |
|
The NASA aluminum testbed cylinder |
|
|
172 | (1) |
|
|
173 | (12) |
|
|
178 | (1) |
|
|
179 | (1) |
|
Appendix 5.A: Kolmogorov n-widths |
|
|
180 | (4) |
|
|
184 | (1) |
|
|
185 | (12) |
|
|
185 | (1) |
|
|
186 | (5) |
|
|
186 | (1) |
|
|
187 | (1) |
|
Predictor/multicorrector Newmark algorithms |
|
|
188 | (3) |
|
Space-time finite elements |
|
|
191 | (6) |
|
Nonlinear Isogeometric Analysis |
|
|
197 | (14) |
|
The Newton-Raphson method |
|
|
197 | (1) |
|
Isogemetric analysis of nonlinear differential equations |
|
|
198 | (4) |
|
Nonlinear heat conduction |
|
|
198 | (1) |
|
Applying the Newton-Raphson method |
|
|
199 | (1) |
|
Nonlinear finite element analysis |
|
|
200 | (2) |
|
Nonlinear time integration: The generalized-α method |
|
|
202 | (9) |
|
|
209 | (2) |
|
Nearly Incompressible Solids |
|
|
211 | (16) |
|
B formulation for linear elasticity using NURBS |
|
|
212 | (9) |
|
An intuitive look at mesh locking |
|
|
213 | (2) |
|
Strain projection and the B method |
|
|
215 | (1) |
|
B, the projection operator, and NURBS |
|
|
216 | (4) |
|
Infinite plate with circular hole under in-plane tension |
|
|
220 | (1) |
|
F formulation for nonlinear elasticity |
|
|
221 | (6) |
|
|
221 | (1) |
|
|
222 | (3) |
|
|
225 | (2) |
|
|
227 | (26) |
|
|
227 | (4) |
|
Pure advection: the first-order wave equation |
|
|
227 | (3) |
|
Pure diffusion: the heat equation |
|
|
230 | (1) |
|
The variational multiscale (VMS) method |
|
|
231 | (8) |
|
Numerical example: linear advection-diffusion |
|
|
232 | (1) |
|
|
233 | (2) |
|
A multiscale decomposition |
|
|
235 | (2) |
|
The variational multiscale formulation |
|
|
237 | (1) |
|
Reconciling Galerkin's method with VMS |
|
|
238 | (1) |
|
Advection-diffusion equation |
|
|
239 | (4) |
|
|
240 | (1) |
|
The streamline upwind/Petrov-Galerkin (SUPG) method |
|
|
240 | (1) |
|
Numerical example: advection-diffusion in two dimensions, revisited |
|
|
241 | (2) |
|
|
243 | (10) |
|
Incompressible Navier-Stokes equations |
|
|
245 | (1) |
|
Multiscale residual-based formulation of the incompressible Navier-Stokes equations employing the advective form |
|
|
246 | (2) |
|
|
248 | (3) |
|
|
251 | (2) |
|
Fluid-Structure Interation and Fluids on Moving Domains |
|
|
253 | (26) |
|
The arbitrary Lagrangian-Eulerian (ALE) formulation |
|
|
253 | (1) |
|
|
254 | (2) |
|
Flow in a patient-specific abdominal aorta with aneurysm |
|
|
256 | (8) |
|
Construction of the arterial cross-section |
|
|
256 | (5) |
|
|
261 | (3) |
|
|
264 | (15) |
|
Coupling of the rotating and stationary domains |
|
|
266 | (6) |
|
Numerical example: two propellers spinning in opposite directions |
|
|
272 | (3) |
|
Appendix 10.A: A geometrical template for arterial blood flow modeling |
|
|
275 | (4) |
|
Higher-order partial Differential Equations |
|
|
279 | (8) |
|
The Cahn-Hilliard equation |
|
|
279 | (3) |
|
|
280 | (1) |
|
The dimensionless strong form |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
A two-dimensional example |
|
|
282 | (1) |
|
A three-dimensional example |
|
|
282 | (1) |
|
The continuous/discontinuous Galerkin (CDG) method |
|
|
283 | (4) |
|
|
285 | (2) |
|
|
287 | (16) |
|
The polar form of polynomials |
|
|
287 | (6) |
|
Bezier curves and the de Casteljau algorithm |
|
|
288 | (3) |
|
Continuity of piecewise curves |
|
|
291 | (2) |
|
The polar form of B-splines |
|
|
293 | (10) |
|
Knot vectors and control points |
|
|
293 | (2) |
|
Knot insertion and the de Boor algorithm |
|
|
295 | (2) |
|
Bezier decomposition and function subdivision |
|
|
297 | (4) |
|
|
301 | (2) |
|
State-of-the-Art and Future Directions |
|
|
303 | (10) |
|
|
303 | (2) |
|
|
305 | (8) |
|
Appendix A: Connectivity Arrays |
|
|
313 | (10) |
|
|
313 | (2) |
|
|
315 | (3) |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
319 | (4) |
|
|
321 | (2) |
References |
|
323 | (10) |
Index |
|
333 | |