Muutke küpsiste eelistusi

E-raamat: LaQue's Handbook of Marine Corrosion, 2nd Edition 2nd Edition [Wiley Online]

Edited by (U.S. Department of the Navy, USA)
Teised raamatud teemal:
  • Wiley Online
  • Hind: 259,04 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
Teised raamatud teemal:

The new edition of LaQue's classic text on marine corrosion, providing fully updated control engineering practices and applications

Extensively updated throughout, the second edition of La Que's Handbook of Marine Corrosion remains the standard single-source reference on the unique nature of seawater as a corrosive environment. Designed to help readers reduce operational and life cycle costs for materials in marine environments, this authoritative resource provides clear guidance on design, materials selection, and implementation of corrosion control engineering practices for materials in atmospheric, immersion, or wetted marine environments.

Completely rewritten for the 21st century, this new edition reflects current environmental regulations, best practices, materials, and processes, with special emphasis placed on the engineering, behavior, and practical applications of materials. Divided into three parts, the book first explains the fundamentals of corrosion in marine environments, including atmospheric corrosion, erosion, microbiological corrosion, fatigue, environmental cracking, and cathodic delamination. The second part discusses corrosion control methods and materials selection that can mitigate or eliminate corrosion in different marine environments. The third section provides the reader with specific applications of corrosion engineering to structures, systems, or components that exist in marine environments.

This much-needed new edition:

  • Presents a comprehensive and up-to-date account of the science and engineering aspects of marine corrosion
  • Focuses on engineering aspects, descriptive behavior, and practical applications of materials usage in marine environments
  • Addresses the various materials used in marine environments, including metals, polymers, alloys, coatings, and composites
  • Incorporates current regulations, standards, and recommended practices of numerous organizations such as ASTM International, the US Navy, the American Bureau of Shipping, the International Organization for Standardization, and the International Maritime Organization

Written in a clear and understandable style, La Que's Handbook of Marine Corrosion, Second Edition is an indispensable resource for engineers and materials scientists in disciplines spanning the naval, maritime, commercial, shipping industries, particularly corrosion engineers, ship designers, naval architects, marine engineers, oceanographers, and other professionals involved with products that operate in marine environments.

List of Contributors xix
Preface xxi
1 The Nature of Marine Environments 1(28)
Bopinder Phull
1.1 Introduction
1(1)
1.2 Seawater Chemistry
2(9)
1.2.1 Chemical Composition of Seawater
2(9)
1.2.1.1 Role of Ions
3(2)
1.2.1.2 Dissolved Gases
5(3)
1.2.1.3 Scale-Forming Compounds
8(1)
1.2.1.4 Suspended Matter
9(1)
1.2.1.5 pH
10(1)
1.2.1.6 Chlorination
10(1)
1.3 Physical
11(10)
1.3.1 Temperature
11(2)
1.3.2 Electrolytic Resistivity of Seawater
13(1)
1.3.3 Velocity Effects
14(3)
1.3.4 Effects of Depth
17(1)
1.3.5 Splash and Tidal Zones
18(2)
1.3.6 Bottom Sediments
20(1)
1.4 Biological Effects
21(3)
1.4.1 Microorganisms, Biofilms, and Biofouling
21(3)
1.5 Testing
24(1)
References
25(4)
2 Electrochemistry and Forms of Corrosion 29(20)
David A. Shifter
2.1 Introduction
29(1)
2.2 Corrosion Thermodynamics
30(1)
2.3 Corrosion Kinetics
30(3)
2.4 Passivity
33(1)
2.5 Corrosion Mechanistic Modes
34(9)
2.5.1 Stray Current Corrosion
35(1)
2.5.2 Galvanic Corrosion
35(2)
2.5.3 Crevice Corrosion
37(1)
2.5.4 Pitting
38(1)
2.5.5 Intergranular Corrosion
38(2)
2.5.6 Microbiological-Influenced Corrosion
40(1)
2.5.7 Dealloying
41(1)
2.5.8 Flow-Influenced Corrosion
42(1)
2.6 Environmentally Induced Cracking
43(3)
2.6.1 Stress Corrosion Cracking
43(1)
2.6.2 Fatigue and Corrosion Fatigue
44(1)
2.6.3 High-Temperature Corrosion
45(1)
2.7 Factors Influencing Corrosion
46(1)
References
47(2)
3 Atmospheric Corrosion in Marine Environments 49(14)
David G. Enos
3.1 Introduction
49(1)
3.2 Understanding the Environment (Important Factors)
49(8)
3.2.1 Humidity
51(2)
3.2.2 Temperature
53(1)
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.)
53(2)
3.2.4 Gaseous Contaminants
55(1)
3.2.5 Physical Environment
55(2)
3.3 Basic Electrochemistry of Atmospheric Corrosion
57(2)
3.4 Corrosion Testing
59(1)
3.4.1 Accelerated Testing
59(1)
3.4.2 Long-Term Field Testing
59(1)
3.5 Modeling
59(1)
3.6 Summary
60(1)
Acknowledgment
60(1)
References
60(3)
4 Localized Corrosion 63(60)
David A. Shifter
4.1 Introduction
63(1)
4.2 Pitting
63(15)
4.2.1 Cast Irons
65(1)
4.2.2 Carbon Steels
66(1)
4.2.3 Stainless Steels
66(3)
4.2.4 Nickel Alloys
69(3)
4.2.5 Aluminum Alloys
72(1)
4.2.6 Copper Alloys
73(4)
4.2.7 Titanium Alloys
77(1)
4.3 Crevice Corrosion
78(15)
4.3.1 Cast Irons
81(1)
4.3.2 Carbon Steels
82(1)
4.3.3 Stainless Steels
82(4)
4.3.4 Nickel Alloys
86(3)
4.3.5 Aluminum Alloys
89(2)
4.3.6 Copper Alloys
91(1)
4.3.7 Titanium Alloys
92(1)
4.4 Intergranular Corrosion
93(9)
4.4.1 Cast Irons
94(1)
4.4.2 Carbon Steels
94(1)
4.4.3 Stainless Steels
95(2)
4.4.4 Nickel Alloys
97(1)
4.4.5 Aluminum Alloys
98(3)
4.4.6 Copper Alloys
101(1)
4.4.7 Titanium Alloys
102(1)
4.5 Dealloying
102(6)
4.5.1 Cast Irons
103(1)
4.5.2 Carbon Steels
104(1)
4.5.3 Stainless Steels
104(1)
4.5.4 Nickel Alloys
104(1)
4.5.5 Aluminum Alloys
104(1)
4.5.6 Copper Alloys
105(3)
4.5.7 Titanium Alloys
108(1)
References
108(13)
Further Reading
121(2)
5 Galvanic Corrosion 123(32)
Roger Francis
5.1 Introduction
123(1)
5.2 Conditions Necessary for Galvanic Corrosion
124(1)
5.3 Factors Affecting Galvanic Corrosion
125(10)
5.3.1 Electrode Potential
125(1)
5.3.2 Potential Variability
126(1)
5.3.3 Electrode Efficiency
127(2)
5.3.4 Electrolyte
129(1)
5.3.5 Area Ratio
129(3)
5.3.6 Aeration and Flow Rate
132(1)
5.3.7 Metallurgical Condition and Composition
133(1)
5.3.8 Stifling Effects
134(1)
5.4 Alloy Groups
135(7)
5.4.1 Group 1 Alloys
136(1)
5.4.2 Group 2 Alloys
136(2)
5.4.3 Group 3 Alloys
138(2)
5.4.4 Group 4 Alloys
140(2)
5.5 Marine Atmospheres
142(5)
5.5.1 Factors Affecting Atmospheric Corrosion
142(1)
5.5.2 Materials Compatibility
143(2)
5.5.3 Atmospheric Variability
145(1)
5.5.4 Tropical Atmospheres
145(2)
5.6 Methods of Prevention
147(3)
5.6.1 Materials
147(1)
5.6.2 Insulation and Separation
147(1)
5.6.3 Painting/Coatings
148(1)
5.6.4 Cathodic Protection (CP)
149(1)
5.6.5 Inhibitors
150(1)
5.7 Design
150(1)
References
151(4)
6 The Effects of Turbulent Flow on Corrosion in Seawater 155(18)
K. Daniel Efird
6.1 Introduction
155(1)
6.1.1 Evaluating Flow Effects
155(1)
6.2 The Basics of Turbulent Flow and Corrosion
156(3)
6.2.1 The Nature of Turbulent Flow
156(3)
6.2.2 Disturbed Flow
159(1)
6.3 Erosion-Corrosion
159(2)
6.3.1 Cavitation Corrosion
160(1)
6.4 Flow Effects for Specific Materials
161(3)
6.4.1 Carbon and Low Alloy Steels and Cast Irons
161(1)
6.4.2 Copper Alloys
162(1)
6.4.3 Passive Alloys
163(1)
6.5 Flow Effects in Specific Facility Applications
164(3)
6.A Wall Shear Stress and Mass Transfer Coefficient Defined
167(2)
6.A.1 Wall Shear Stress
167(1)
6.A.2 Mass Transfer Coefficient
168(1)
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress
168(1)
6.B University of Tulsa Erosion Model
169(1)
References
169(4)
7 Biological Fouling and Corrosion Processes 173(18)
Brenda J. Little
Jason S. Lee
7.1 Introduction
173(1)
7.2 Development of Marine Fouling
174(3)
7.2.1 Microfouling
174(2)
7.2.2 Macrofouling
176(1)
7.3 Influence of Marine Fouling on Corrosion
177(5)
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms
177(2)
7.3.1.1 Oxygen Concentration Cells
177(1)
7.3.1.2 Ennoblement
178(1)
7.3.1.3 Galvanic Corrosion
178(1)
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea
179(3)
7.3.2.1 Sulfate Reduction
179(1)
7.3.2.2 Sulfide Reactions with Specific Metals
179(2)
7.3.2.3 Acid Production
181(1)
7.3.2.4 Microbial Oxidation/Reduction of Iron
181(1)
7.4 Diagnosis
182(1)
7.5 Control and Prevention
182(3)
7.5.1 Coatings
183(1)
7.5.2 Biocidal Treatments
183(1)
7.5.3 Cathodic Protection
183(1)
7.5.4 Deoxygenation
184(1)
7.5.5 Flow
185(1)
7.6 Commentary
185(1)
References
186(5)
8 Marine Biofouling 191(24)
Simone Duff
Robert Edyvean
Eleanor Ramsden-Lister
8.1 What Is Biofouling?
191(1)
8.2 Development of Biofouling on New Artificial Surfaces
192(5)
8.2.1 Macromolecules (Conditioning Film)
192(1)
8.2.2 Bacteria
192(3)
8.2.3 Diatoms, Protozoans
195(1)
8.2.4 Larvae and Spores
195(2)
8.3 Established Biofouling Communities
197(2)
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment
199(2)
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment
201(5)
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints
201(1)
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides
201(1)
8.5.3 Foul Release Coatings
202(1)
8.5.4 Electrochemical Control
203(1)
8.5.5 Electrochlorination
204(1)
8.5.6 Ultrasonics for Antifouling
204(1)
8.5.7 Mechanical Cleaning and Prevention
205(1)
8.5.8 Enzymes
205(1)
8.5.9 Biomimetics and Bioinspiration
206(1)
8.6 Conclusion
206(1)
References
207(8)
9 Environmentally Enhanced Fatigue 215(24)
James Burns
9.1 Introduction
215(3)
9.2 Precorrosion Effects
218(3)
9.3 Loading Environment Effects
221(1)
9.4 Crack Initiation
221(2)
9.5 Crack Propagation
223(7)
9.5.1 Aluminum
223(2)
9.5.2 Titanium
225(1)
9.5.3 Steel
226(4)
9.6 Effect of Corrosion Mitigation Techniques on Fatigue
230(1)
9.7 Conclusion
231(1)
References
232(7)
10 Effects of Stress - Environment Assisted Cracking 239(52)
John R. Scully
10.1 Introduction
239(3)
10.2 High-Strength Steels
242(7)
10.2.1 Physical Metallurgy
242(1)
10.2.2 General Susceptibility Trends
243(2)
10.2.3 Dependence on Applied Potential
245(4)
10.3 Stainless Steels
249(5)
10.3.1 Physical Metallurgy
249(2)
10.3.2 General Susceptibility Trends
251(3)
10.3.3 Dependence on Applied Potential
254(1)
10.4 Precipitation Hardened Stainless Steels
254(7)
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel
254(1)
10.4.2 General Susceptibility Trends
255(5)
10.4.3 Effect of Applied Potential
260(1)
10.5 Titanium Alloys
261(5)
10.5.1 Physical Metallurgy
261(2)
10.5.2 General Susceptibility Trends
263(1)
10.5.3 Effect of Potential
264(2)
10.6 High-Strength Aluminum Alloys
266(6)
10.6.1 Physical Metallurgy
266(2)
10.6.2 General Susceptibility Trends
268(3)
10.6.3 Effects of Potential
271(1)
10.7 Nickel Base Alloys
272(5)
10.7.1 Physical Metallurgy
272(1)
10.7.2 General Susceptibility Trends
273(4)
10.7.2.1 Effects of Applied Potential
277(1)
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys
277(2)
10.8.1 Physical Metallurgy
277(1)
10.8.2 General Susceptibility Trends
278(1)
10.9 Magnesium Alloys
279(1)
10.9.1 Physical Metallurgy
279(1)
10.9.2 General Susceptibility Trends and Effects of Potential
279(1)
References
280(11)
11 Cathodic Delamination 291(10)
Thomas Ramotowski
11.1 Introduction
291(2)
11.2 Mechanisms for Cathodic Delamination
293(3)
11.3 Cathodic Delamination Mitigation Strategies
296(2)
References
298(3)
12 High Temperature Corrosion in Marine Environments 301(34)
David A. Shifter
12.1 Introduction
301(1)
12.1.1 High Temperature Corrosion and Degradation Processes
301(1)
12.2 Boilers
302(4)
12.3 Diesel Engines
306(3)
12.4 Gas Turbine Engines
309(10)
12.4.1 High-Temperature Coatings
317(2)
12.4.2 Factors Affecting Operational Life
319(1)
12.5 Incinerators
319(5)
12.6 Fuels
324(4)
References
328(7)
13 Design for Corrosion Control in Marine Environments 335(20)
David A. Shifler
13.1 Introduction
335(1)
13.2 General Design Approach
336(3)
13.3 Corrosion Control Design Choices for Marine Structures
339(3)
13.3.1 Materials
339(1)
13.3.2 Organic Coatings
339(1)
13.3.3 Metallic Coatings
340(1)
13.3.4 Cathodic Protection
341(1)
13.3.5 Inhibitors
341(1)
13.4 Structural Designs that Minimize Corrosion
342(3)
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria
345(1)
13.6 Ship Design in Marine Environments
346(4)
13.6.1 Military Ships and Assets
346(2)
13.6.2 Commercial Ship Design
348(1)
13.6.3 Cruise Ship Design
349(1)
13.7 Offshore Structural Design in Marine Environments
350(1)
13.8 Summary
351(1)
References
351(2)
Further Reading
353(1)
Ships
353(1)
Offshore Structures
354(1)
14 Modeling of Marine Corrosion Processes 355(24)
Jason S. Lee
David G. Enos
Roger Francis
Sean Brossia
David A. Shifler
14.1 Introduction
355(1)
14.2 Computational Approaches
355(1)
14.3 Assumptions in Modeling
356(1)
14.4 Galvanic Corrosion
357(2)
14.5 Localized Corrosion
359(5)
14.5.1 Crevices
360(3)
14.5.2 Cracks
363(1)
14.5.3 Pitting
363(1)
14.5.4 Intergranular Corrosion
364(1)
14.6 General Corrosion
364(1)
14.7 Atmospheric Corrosion Models
365(2)
14.7.1 Holistic Atmospheric Corrosion Model
365(1)
14.7.2 GILDES Model
366(1)
14.8 Cathodic Protection
367(2)
14.9 Recent Modeling Advances
369(2)
14.9.1 Future Directions of DFT
370(1)
14.10 Limitations and Future Needs
371(1)
14.11 Summary
372(1)
References
373(6)
15 Marine Corrosion Testing 379(42)
David A. Shifter
David G. Enos
15.1 Introduction
379(1)
15.2 Corrosion Test Planning
379(2)
15.3 Types of Corrosion Testing
381(24)
15.3.1 Laboratory Testing
381(2)
15.3.2 Salt Spray/Salt Fog Testing
383(3)
15.3.2.1 Types of Salt Spray Environments
384(1)
15.3.2.2 Limitations of Salt Spray Testing
385(1)
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing
386(3)
15.3.4 Immersion Testing
389(4)
15.3.5 Electrochemical Testing
393(4)
15.3.5.1 Direct Current Electrochemical Methods
393(3)
15.3.5.2 Nondestructive Electrochemical Methods
396(1)
15.3.6 High Velocity Flow Testing
397(1)
15.3.7 Environmental Cracking Test Methods
398(3)
15.3.8 High Temperature Testing - Burner-Rigs
401(1)
15.3.9 Molten Salt Tests
401(2)
15.3.9.1 Thermogravimetric Analysis
402(1)
15.3.10 Microbiological Tests
403(2)
15.4 Field Evaluation
405(7)
15.4.1 In-Service Testing
408(2)
15.4.1.1 Simulated Service Testing
410(1)
15.4.2 Standards for Seawater Testing
410(2)
References
412(9)
16 Nonmetallic Materials in Marine Service 421(20)
Wayne Tucker
16.1 Introduction
421(1)
16.2 Selection and Application
422(2)
16.2.1 Material Definitions
422(1)
16.2.2 Resistance to Environmental Factors
423(1)
16.2.3 Mechanical and Physical Properties
423(1)
16.3 Wood
424(3)
16.3.1 Introduction
424(1)
16.3.2 Degrading Factors
424(3)
16.4 Plywood and Other Wood Composites
427(1)
16.5 Concrete
428(5)
16.5.1 Introduction
428(1)
16.5.2 Marine Environmental Effects
429(1)
16.5.3 Protection of Reinforced Concrete
430(1)
16.5.4 Epoxy Coated Rebars (ECR)
431(1)
16.5.5 Fiber Reinforced Concrete (FRC)
432(1)
16.5.6 Repairs
432(1)
16.6 Polymers
433(4)
16.6.1 Fiber Reinforced Plastics (FRPs)
433(2)
16.6.2 Environmental Effects
435(1)
16.6.3 Fatigue of Marine Composites
436(1)
16.6.4 Microbial Degradation
436(1)
16.6.5 Ceramics and Glass
436(1)
References
437(4)
17 Electronics and Electrical Equipment in a Marine Environment 441(12)
James A. Ellor
17.1 Introduction
441(1)
17.2 Primary Corrosion Phenomena in a Marine Environment
442(4)
17.2.1 Types of Corrosion
444(2)
17.2.1.1 Galvanic Corrosion
444(1)
17.2.1.2 Electrolytic Corrosion
445(1)
17.2.1.3 Electrochemical Migration
445(1)
17.3 Protection from the Environment
446(3)
17.3.1 Conformal Coatings
446(1)
17.3.2 Enclosures
447(1)
17.3.3 Hermetic Seals
448(1)
17.3.4 Dehumidification
448(1)
17.3.5 Corrosion Inhibitors
449(1)
17.3.6 Water-Displacing Compounds
449(1)
17.4 Corrosion Testing for Electronics in a Marine Environment
449(1)
17.5 Conclusions
450(1)
References
451(2)
18 Structural Alloys in Marine Service 453(74)
David A. Shifter
18.1 Cast Irons
453(5)
18.1.1 Cast Iron Metallurgy
454(3)
18.1.2 Cast Iron Corrosion Behavior
457(1)
18.2 Carbon Steels
458(15)
18.2.1 Carbon Steel Chemistries
460(3)
18.2.1.1 Effects of Alloying Additions
460(3)
18.2.2 Surface Oxides/Corrosion Products
463(1)
18.2.3 Heat Treating
464(4)
18.2.4 Marine Steels
468(5)
18.3 Stainless Steels
473(8)
18.3.1 Stainless Steel Types
474(5)
18.3.1.1 Austenitic Stainless Steels
474(1)
18.3.1.2 Ferritic Stainless Steels
475(3)
18.3.1.3 Martensitic Stainless Steels
478(1)
18.3.1.4 Duplex Stainless Steels
478(1)
18.3.1.5 Precipitation-Hardening Stainless Steels
479(1)
18.3.2 Corrosion Behavior of Stainless Steels
479(2)
18.3.3 Marine Uses of Stainless Steels
481(1)
18.4 Nickel and Nickel Alloys
481(9)
18.4.1 Corrosion Resistant Nickel and Nickel Alloys
483(3)
18.4.2 High-temperature Nickel Alloys - Superalloys
486(4)
18.5 Aluminum and Aluminum Alloys
490(7)
18.5.1 Aluminum Alloy Familites
490(4)
18.5.2 Heat Treatment of Aluminum Alloys
494(2)
18.5.3 Corrosion Behavior of Aluminum Alloys
496(1)
18.6 Copper and Copper Alloys
497(9)
18.6.1 General Corrosion and Mechanical Properties
497(1)
18.6.2 Bronze Alloys
498(4)
18.6.3 Brasses
502(1)
18.6.4 Copper-Nickel Alloys
503(3)
18.7 Titanium and Titanium Alloys
506(4)
18.7.1 Chemistry and Metallurgy of Titanium Alloys
507(3)
18.7.2 General Corrosion Behavior
510(1)
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service
510(8)
18.8.1 Surface Properties and Processes
510(3)
18.8.1.1 Passivity
510(3)
18.8.2 Material Bulk Properties
513(1)
18.8.3 Joining Effects on Materials
514(4)
18.8.4 Cathodic Protection
518(1)
References
518(7)
Additional Reading and References
525(2)
19 Marine Coatings 527(46)
Charles G. Munger
Louis Vincent
David A. Shifter
19.1 Introduction
527(1)
19.2 Characteristics of a Ideal Marine Coating
528(4)
19.3 Coating Degradation and Failures
532(1)
19.4 Surface Preparation
532(4)
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion
536(3)
19.6 Coatings for Marine Service
539(6)
19.6.1 Metallized Coatings
539(5)
19.6.1.1 Metal-Containing Primers
542(1)
19.6.1.2 Cadmium Plating
543(1)
19.6.1.3 Cadmium Options
543(1)
19.6.2 Organic Coatings
544(1)
19.6.2.1 Coating Thickness Measurements
544(1)
19.7 Types of Coatings for Marine Vessels
545(18)
19.7.1 Conversion Coatings
547(1)
19.7.1.1 Hexavalent Chromate Conversion Coatings
547(1)
19.7.1.2 Hexavalent Chromate Alternatives
547(1)
19.7.1.3 Phosphate Coatings
548(1)
19.7.2 Organic Coatings and Nanocomposites
548(1)
19.7.3 Shop Primers
549(1)
19.7.4 Universal Primers
550(1)
19.7.5 Zinc-Rich Coatings
550(1)
19.7.6 Organic Primers
551(1)
19.7.7 Tie-Coats
552(1)
19.7.8 Abrasion Resistant Coatings
552(1)
19.7.9 Cargo Tank Linings
553(1)
19.7.9.1 Tank Lining Chemical Resistance
554(1)
19.7.10 Bilge Coatings
554(1)
19.7.11 Ballast Tank Linings
555(3)
19.7.12 Cofferdam and Void Coatings
558(1)
19.7.13 Potable Water Tank Linings
558(1)
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces
559(1)
19.7.15 Deck Coatings - Including Heli-Deck Surfaces
560(2)
19.7.16 Hull Coatings - Freeboard Area
562(1)
19.7.17 Maintenance Painting Programs
563(1)
19.8 Offshore Structures
563(2)
References
565(8)
20 Biofouling Control 573(20)
David A. Shifter
20.1 The Nature of Biofouling
573(1)
20.2 Fouling Effects on Ships
574(5)
20.2.1 Control of Biofouling
576(21)
20.2.1.1 Biocidal Antifoulant Coatings
576(3)
20.3 Non-biocidal Antifoulant Methods and Coatings
579(3)
20.4 Maintenance, Monitoring, and Testing
582(5)
References
587(6)
21 Cathodic Protection 593(40)
James A. Ellor
David A. Shifter
Robert A. Bardsley
21.1 Theory
593(3)
21.2 Reference Cells
596(1)
21.3 Methods of Applying Cathodic Protection
597(7)
21.3.1 Cathodic Protection Using Sacrificial Anodes
597(3)
21.3.2 Impressed Current Cathodic Protection (ICCP)
600(4)
21.3.2.1 Impressed Current Anodes Materials
601(1)
21.3.2.2 Sacrificial Anodes
602(2)
21.3.2.3 Impressed Current Cathodic Protection
604(1)
21.4 Design Basics
604(8)
21.4.1 Calcareous Deposits and Impacts on Protection Criteria
605(2)
21.4.2 Polarization Characteristics Over Time
607(1)
21.4.3 Design Using Physical Scale Modeling
608(1)
21.4.4 Computer-Assisted Design
609(1)
21.4.5 Protective (Dielectric) Shields
609(1)
21.4.6 Protection Current Requirements
610(1)
21.4.7 Polarization Potential Criteria of Protection
611(1)
21.4.8 Automated Control Systems
611(1)
21.5 Cathodic Protection in Marine Service
612(11)
21.5.1 Small Boats and Large Commercial and Marine Vessels
612(3)
21.5.2 Offshore Structures
615(2)
21.5.3 Bridges, Wharves, and Jetties
617(4)
21.5.4 Marine Pipelines
621(2)
21.6 Concerns with the Use of Cathodic Protection
623(3)
21.6.1 Corrosion/Cathodic Protection Monitoring
624(2)
References
626(7)
22 Corrosion Monitoring in Seawater 633(20)
Sean Brossia
22.1 Introduction
633(1)
22.2 Electrochemical Methods
634(10)
22.2.1 Linear Polarization Resistance
634(2)
22.2.2 Potential Measurements
636(1)
22.2.3 Electrochemical Impedance Spectroscopy
637(4)
22.2.4 Electrochemical Noise
641(1)
22.2.5 Electrochemical Frequency Modulation
641(1)
22.2.6 Wirebeam/Multielectrode Array Methods
641(3)
22.3 Non-Electrochemical Methods
644(3)
22.4 Challenges
647(1)
22.5 Applications
648(1)
22.6 Summary and Conclusions
649(1)
References
650(3)
23 Marine Fasteners 653(14)
David A. Shifler
23.1 Introduction
653(1)
23.2 Failure Modes
654(1)
23.3 General Fastener Design
655(1)
23.4 Fastener Materials Selection
656(5)
23.4.1 Standards and Specifications
656(3)
23.4.2 Low-Alloy Steels
659(1)
23.4.3 Stainless Steels
659(1)
23.4.4 Aluminum Alloys
659(1)
23.4.5 Copper Alloys
660(1)
23.4.6 Nickel Alloys
660(1)
23.4.7 Titanium Alloys
660(1)
23.5 Fastener Behavior Above the Waterline
661(1)
23.6 Fastener Behavior in Submerged, Below the Waterline
661(1)
23.7 Corrosion Protection for Fasteners
662(1)
References
663(3)
Further Reading
666(1)
24 Marine and Offshore Piping Systems 667(24)
David A. Shifler
24.1 Piping Systems
667(4)
24.1.1 Bilge System
667(1)
24.1.2 Ballast System
667(1)
24.1.3 Firefighting Systems
668(1)
24.1.4 Drainage Systems
668(1)
24.1.5 Fresh-Water Systems
668(1)
24.1.6 Fuel and Flammable Liquid Piping
668(1)
24.1.7 Ventilation Systems - Ships
669(1)
24.1.8 Hydrocarbon Piping (Oil and Gas)
669(1)
24.1.9 Vent System - Offshore
669(1)
24.1.10 Flare System
669(1)
24.1.11 Firewater Utility Piping
669(1)
24.1.12 Risers
670(1)
24.1.13 Subsea Piping
670(1)
24.2 Piping System Design
671(1)
24.3 Materials Selection
672(2)
24.4 Failure Modes of Piping Systems
674(12)
24.4.1 Uniform Corrosion
674(1)
24.4.2 Pitting and Crevice Corrosion
675(2)
24.4.3 Galvanic Corrosion
677(4)
24.4.4 Abrasion
681(1)
24.4.5 Erosion and Erosion Corrosion
681(3)
24.4.6 Variable Temperature Swings
684(1)
24.4.7 Wear and Impact
684(1)
24.4.8 Fatigue
685(1)
24.4.9 Water Hammer
685(1)
24.5 Corrosion Control Methods
686(1)
References
686(3)
Further Reading
689(2)
25 Corrosion Control and Preservation of Historic Marine Artifacts 691(16)
David A. Shifler
25.1 Introduction
691(3)
25.2 Basic Conservation Procedures
694(1)
25.2.1 Laboratory Conservation Procedures
695(1)
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts
695(8)
25.3.1 Corrosion and Conservation of Ferrous Alloys
696(4)
25.3.2 Corrosion and Conservation of Other Metals and Alloys
700(2)
25.3.2.1 Corrosion and Conservation of Copper Artifacts
701(1)
25.3.2.2 Corrosion and Conservation of Silver Artifacts
701(1)
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter
702(1)
References
703(2)
Further Reading
705(1)
Marine Archaeology Conservation
705(2)
Index 707
David A. Shifler, Office of Naval Research, Naval Materials Division, U.S. Department of the Navy, USA. Dr Shifler has over 35 years of work experience as a materials and corrosion engineer and has published extensively on corrosion and performance of materials in corrosive environments. He is a Certified Corrosion Specialist with NACE International and a Fellow of the UK Institute of Corrosion, NACE International, ASM International, and the Washington Academy of Sciences.