List of Contributors |
|
xix | |
Preface |
|
xxi | |
1 The Nature of Marine Environments |
|
1 | (28) |
|
|
|
1 | (1) |
|
|
2 | (9) |
|
1.2.1 Chemical Composition of Seawater |
|
|
2 | (9) |
|
|
3 | (2) |
|
|
5 | (3) |
|
1.2.1.3 Scale-Forming Compounds |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (10) |
|
|
11 | (2) |
|
1.3.2 Electrolytic Resistivity of Seawater |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
17 | (1) |
|
1.3.5 Splash and Tidal Zones |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (3) |
|
1.4.1 Microorganisms, Biofilms, and Biofouling |
|
|
21 | (3) |
|
|
24 | (1) |
|
|
25 | (4) |
2 Electrochemistry and Forms of Corrosion |
|
29 | (20) |
|
|
|
29 | (1) |
|
2.2 Corrosion Thermodynamics |
|
|
30 | (1) |
|
|
30 | (3) |
|
|
33 | (1) |
|
2.5 Corrosion Mechanistic Modes |
|
|
34 | (9) |
|
2.5.1 Stray Current Corrosion |
|
|
35 | (1) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.5.5 Intergranular Corrosion |
|
|
38 | (2) |
|
2.5.6 Microbiological-Influenced Corrosion |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.5.8 Flow-Influenced Corrosion |
|
|
42 | (1) |
|
2.6 Environmentally Induced Cracking |
|
|
43 | (3) |
|
2.6.1 Stress Corrosion Cracking |
|
|
43 | (1) |
|
2.6.2 Fatigue and Corrosion Fatigue |
|
|
44 | (1) |
|
2.6.3 High-Temperature Corrosion |
|
|
45 | (1) |
|
2.7 Factors Influencing Corrosion |
|
|
46 | (1) |
|
|
47 | (2) |
3 Atmospheric Corrosion in Marine Environments |
|
49 | (14) |
|
|
|
49 | (1) |
|
3.2 Understanding the Environment (Important Factors) |
|
|
49 | (8) |
|
|
51 | (2) |
|
|
53 | (1) |
|
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) |
|
|
53 | (2) |
|
3.2.4 Gaseous Contaminants |
|
|
55 | (1) |
|
3.2.5 Physical Environment |
|
|
55 | (2) |
|
3.3 Basic Electrochemistry of Atmospheric Corrosion |
|
|
57 | (2) |
|
|
59 | (1) |
|
3.4.1 Accelerated Testing |
|
|
59 | (1) |
|
3.4.2 Long-Term Field Testing |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (3) |
4 Localized Corrosion |
|
63 | (60) |
|
|
|
63 | (1) |
|
|
63 | (15) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (3) |
|
|
69 | (3) |
|
|
72 | (1) |
|
|
73 | (4) |
|
|
77 | (1) |
|
|
78 | (15) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (4) |
|
|
86 | (3) |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
92 | (1) |
|
4.4 Intergranular Corrosion |
|
|
93 | (9) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
98 | (3) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (6) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
105 | (3) |
|
|
108 | (1) |
|
|
108 | (13) |
|
|
121 | (2) |
5 Galvanic Corrosion |
|
123 | (32) |
|
|
|
123 | (1) |
|
5.2 Conditions Necessary for Galvanic Corrosion |
|
|
124 | (1) |
|
5.3 Factors Affecting Galvanic Corrosion |
|
|
125 | (10) |
|
5.3.1 Electrode Potential |
|
|
125 | (1) |
|
5.3.2 Potential Variability |
|
|
126 | (1) |
|
5.3.3 Electrode Efficiency |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
129 | (3) |
|
5.3.6 Aeration and Flow Rate |
|
|
132 | (1) |
|
5.3.7 Metallurgical Condition and Composition |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (7) |
|
|
136 | (1) |
|
|
136 | (2) |
|
|
138 | (2) |
|
|
140 | (2) |
|
|
142 | (5) |
|
5.5.1 Factors Affecting Atmospheric Corrosion |
|
|
142 | (1) |
|
5.5.2 Materials Compatibility |
|
|
143 | (2) |
|
5.5.3 Atmospheric Variability |
|
|
145 | (1) |
|
5.5.4 Tropical Atmospheres |
|
|
145 | (2) |
|
5.6 Methods of Prevention |
|
|
147 | (3) |
|
|
147 | (1) |
|
5.6.2 Insulation and Separation |
|
|
147 | (1) |
|
|
148 | (1) |
|
5.6.4 Cathodic Protection (CP) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (4) |
6 The Effects of Turbulent Flow on Corrosion in Seawater |
|
155 | (18) |
|
|
|
155 | (1) |
|
6.1.1 Evaluating Flow Effects |
|
|
155 | (1) |
|
6.2 The Basics of Turbulent Flow and Corrosion |
|
|
156 | (3) |
|
6.2.1 The Nature of Turbulent Flow |
|
|
156 | (3) |
|
|
159 | (1) |
|
|
159 | (2) |
|
6.3.1 Cavitation Corrosion |
|
|
160 | (1) |
|
6.4 Flow Effects for Specific Materials |
|
|
161 | (3) |
|
6.4.1 Carbon and Low Alloy Steels and Cast Irons |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
6.5 Flow Effects in Specific Facility Applications |
|
|
164 | (3) |
|
6.A Wall Shear Stress and Mass Transfer Coefficient Defined |
|
|
167 | (2) |
|
|
167 | (1) |
|
6.A.2 Mass Transfer Coefficient |
|
|
168 | (1) |
|
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress |
|
|
168 | (1) |
|
6.B University of Tulsa Erosion Model |
|
|
169 | (1) |
|
|
169 | (4) |
7 Biological Fouling and Corrosion Processes |
|
173 | (18) |
|
|
|
|
173 | (1) |
|
7.2 Development of Marine Fouling |
|
|
174 | (3) |
|
|
174 | (2) |
|
|
176 | (1) |
|
7.3 Influence of Marine Fouling on Corrosion |
|
|
177 | (5) |
|
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms |
|
|
177 | (2) |
|
7.3.1.1 Oxygen Concentration Cells |
|
|
177 | (1) |
|
|
178 | (1) |
|
7.3.1.3 Galvanic Corrosion |
|
|
178 | (1) |
|
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea |
|
|
179 | (3) |
|
7.3.2.1 Sulfate Reduction |
|
|
179 | (1) |
|
7.3.2.2 Sulfide Reactions with Specific Metals |
|
|
179 | (2) |
|
|
181 | (1) |
|
7.3.2.4 Microbial Oxidation/Reduction of Iron |
|
|
181 | (1) |
|
|
182 | (1) |
|
7.5 Control and Prevention |
|
|
182 | (3) |
|
|
183 | (1) |
|
7.5.2 Biocidal Treatments |
|
|
183 | (1) |
|
7.5.3 Cathodic Protection |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (5) |
8 Marine Biofouling |
|
191 | (24) |
|
|
|
|
|
191 | (1) |
|
8.2 Development of Biofouling on New Artificial Surfaces |
|
|
192 | (5) |
|
8.2.1 Macromolecules (Conditioning Film) |
|
|
192 | (1) |
|
|
192 | (3) |
|
8.2.3 Diatoms, Protozoans |
|
|
195 | (1) |
|
|
195 | (2) |
|
8.3 Established Biofouling Communities |
|
|
197 | (2) |
|
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment |
|
|
199 | (2) |
|
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment |
|
|
201 | (5) |
|
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints |
|
|
201 | (1) |
|
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides |
|
|
201 | (1) |
|
8.5.3 Foul Release Coatings |
|
|
202 | (1) |
|
8.5.4 Electrochemical Control |
|
|
203 | (1) |
|
8.5.5 Electrochlorination |
|
|
204 | (1) |
|
8.5.6 Ultrasonics for Antifouling |
|
|
204 | (1) |
|
8.5.7 Mechanical Cleaning and Prevention |
|
|
205 | (1) |
|
|
205 | (1) |
|
8.5.9 Biomimetics and Bioinspiration |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (8) |
9 Environmentally Enhanced Fatigue |
|
215 | (24) |
|
|
|
215 | (3) |
|
|
218 | (3) |
|
9.3 Loading Environment Effects |
|
|
221 | (1) |
|
|
221 | (2) |
|
|
223 | (7) |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
226 | (4) |
|
9.6 Effect of Corrosion Mitigation Techniques on Fatigue |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (7) |
10 Effects of Stress - Environment Assisted Cracking |
|
239 | (52) |
|
|
|
239 | (3) |
|
10.2 High-Strength Steels |
|
|
242 | (7) |
|
10.2.1 Physical Metallurgy |
|
|
242 | (1) |
|
10.2.2 General Susceptibility Trends |
|
|
243 | (2) |
|
10.2.3 Dependence on Applied Potential |
|
|
245 | (4) |
|
|
249 | (5) |
|
10.3.1 Physical Metallurgy |
|
|
249 | (2) |
|
10.3.2 General Susceptibility Trends |
|
|
251 | (3) |
|
10.3.3 Dependence on Applied Potential |
|
|
254 | (1) |
|
10.4 Precipitation Hardened Stainless Steels |
|
|
254 | (7) |
|
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel |
|
|
254 | (1) |
|
10.4.2 General Susceptibility Trends |
|
|
255 | (5) |
|
10.4.3 Effect of Applied Potential |
|
|
260 | (1) |
|
|
261 | (5) |
|
10.5.1 Physical Metallurgy |
|
|
261 | (2) |
|
10.5.2 General Susceptibility Trends |
|
|
263 | (1) |
|
10.5.3 Effect of Potential |
|
|
264 | (2) |
|
10.6 High-Strength Aluminum Alloys |
|
|
266 | (6) |
|
10.6.1 Physical Metallurgy |
|
|
266 | (2) |
|
10.6.2 General Susceptibility Trends |
|
|
268 | (3) |
|
10.6.3 Effects of Potential |
|
|
271 | (1) |
|
|
272 | (5) |
|
10.7.1 Physical Metallurgy |
|
|
272 | (1) |
|
10.7.2 General Susceptibility Trends |
|
|
273 | (4) |
|
10.7.2.1 Effects of Applied Potential |
|
|
277 | (1) |
|
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys |
|
|
277 | (2) |
|
10.8.1 Physical Metallurgy |
|
|
277 | (1) |
|
10.8.2 General Susceptibility Trends |
|
|
278 | (1) |
|
|
279 | (1) |
|
10.9.1 Physical Metallurgy |
|
|
279 | (1) |
|
10.9.2 General Susceptibility Trends and Effects of Potential |
|
|
279 | (1) |
|
|
280 | (11) |
11 Cathodic Delamination |
|
291 | (10) |
|
|
|
291 | (2) |
|
11.2 Mechanisms for Cathodic Delamination |
|
|
293 | (3) |
|
11.3 Cathodic Delamination Mitigation Strategies |
|
|
296 | (2) |
|
|
298 | (3) |
12 High Temperature Corrosion in Marine Environments |
|
301 | (34) |
|
|
|
301 | (1) |
|
12.1.1 High Temperature Corrosion and Degradation Processes |
|
|
301 | (1) |
|
|
302 | (4) |
|
|
306 | (3) |
|
|
309 | (10) |
|
12.4.1 High-Temperature Coatings |
|
|
317 | (2) |
|
12.4.2 Factors Affecting Operational Life |
|
|
319 | (1) |
|
|
319 | (5) |
|
|
324 | (4) |
|
|
328 | (7) |
13 Design for Corrosion Control in Marine Environments |
|
335 | (20) |
|
|
|
335 | (1) |
|
13.2 General Design Approach |
|
|
336 | (3) |
|
13.3 Corrosion Control Design Choices for Marine Structures |
|
|
339 | (3) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
13.3.4 Cathodic Protection |
|
|
341 | (1) |
|
|
341 | (1) |
|
13.4 Structural Designs that Minimize Corrosion |
|
|
342 | (3) |
|
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria |
|
|
345 | (1) |
|
13.6 Ship Design in Marine Environments |
|
|
346 | (4) |
|
13.6.1 Military Ships and Assets |
|
|
346 | (2) |
|
13.6.2 Commercial Ship Design |
|
|
348 | (1) |
|
13.6.3 Cruise Ship Design |
|
|
349 | (1) |
|
13.7 Offshore Structural Design in Marine Environments |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (2) |
|
|
353 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
14 Modeling of Marine Corrosion Processes |
|
355 | (24) |
|
|
|
|
|
|
|
355 | (1) |
|
14.2 Computational Approaches |
|
|
355 | (1) |
|
14.3 Assumptions in Modeling |
|
|
356 | (1) |
|
|
357 | (2) |
|
|
359 | (5) |
|
|
360 | (3) |
|
|
363 | (1) |
|
|
363 | (1) |
|
14.5.4 Intergranular Corrosion |
|
|
364 | (1) |
|
|
364 | (1) |
|
14.7 Atmospheric Corrosion Models |
|
|
365 | (2) |
|
14.7.1 Holistic Atmospheric Corrosion Model |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (2) |
|
14.9 Recent Modeling Advances |
|
|
369 | (2) |
|
14.9.1 Future Directions of DFT |
|
|
370 | (1) |
|
14.10 Limitations and Future Needs |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
373 | (6) |
15 Marine Corrosion Testing |
|
379 | (42) |
|
|
|
|
379 | (1) |
|
15.2 Corrosion Test Planning |
|
|
379 | (2) |
|
15.3 Types of Corrosion Testing |
|
|
381 | (24) |
|
15.3.1 Laboratory Testing |
|
|
381 | (2) |
|
15.3.2 Salt Spray/Salt Fog Testing |
|
|
383 | (3) |
|
15.3.2.1 Types of Salt Spray Environments |
|
|
384 | (1) |
|
15.3.2.2 Limitations of Salt Spray Testing |
|
|
385 | (1) |
|
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing |
|
|
386 | (3) |
|
|
389 | (4) |
|
15.3.5 Electrochemical Testing |
|
|
393 | (4) |
|
15.3.5.1 Direct Current Electrochemical Methods |
|
|
393 | (3) |
|
15.3.5.2 Nondestructive Electrochemical Methods |
|
|
396 | (1) |
|
15.3.6 High Velocity Flow Testing |
|
|
397 | (1) |
|
15.3.7 Environmental Cracking Test Methods |
|
|
398 | (3) |
|
15.3.8 High Temperature Testing - Burner-Rigs |
|
|
401 | (1) |
|
|
401 | (2) |
|
15.3.9.1 Thermogravimetric Analysis |
|
|
402 | (1) |
|
15.3.10 Microbiological Tests |
|
|
403 | (2) |
|
|
405 | (7) |
|
15.4.1 In-Service Testing |
|
|
408 | (2) |
|
15.4.1.1 Simulated Service Testing |
|
|
410 | (1) |
|
15.4.2 Standards for Seawater Testing |
|
|
410 | (2) |
|
|
412 | (9) |
16 Nonmetallic Materials in Marine Service |
|
421 | (20) |
|
|
|
421 | (1) |
|
16.2 Selection and Application |
|
|
422 | (2) |
|
16.2.1 Material Definitions |
|
|
422 | (1) |
|
16.2.2 Resistance to Environmental Factors |
|
|
423 | (1) |
|
16.2.3 Mechanical and Physical Properties |
|
|
423 | (1) |
|
|
424 | (3) |
|
|
424 | (1) |
|
|
424 | (3) |
|
16.4 Plywood and Other Wood Composites |
|
|
427 | (1) |
|
|
428 | (5) |
|
|
428 | (1) |
|
16.5.2 Marine Environmental Effects |
|
|
429 | (1) |
|
16.5.3 Protection of Reinforced Concrete |
|
|
430 | (1) |
|
16.5.4 Epoxy Coated Rebars (ECR) |
|
|
431 | (1) |
|
16.5.5 Fiber Reinforced Concrete (FRC) |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
433 | (4) |
|
16.6.1 Fiber Reinforced Plastics (FRPs) |
|
|
433 | (2) |
|
16.6.2 Environmental Effects |
|
|
435 | (1) |
|
16.6.3 Fatigue of Marine Composites |
|
|
436 | (1) |
|
16.6.4 Microbial Degradation |
|
|
436 | (1) |
|
16.6.5 Ceramics and Glass |
|
|
436 | (1) |
|
|
437 | (4) |
17 Electronics and Electrical Equipment in a Marine Environment |
|
441 | (12) |
|
|
|
441 | (1) |
|
17.2 Primary Corrosion Phenomena in a Marine Environment |
|
|
442 | (4) |
|
17.2.1 Types of Corrosion |
|
|
444 | (2) |
|
17.2.1.1 Galvanic Corrosion |
|
|
444 | (1) |
|
17.2.1.2 Electrolytic Corrosion |
|
|
445 | (1) |
|
17.2.1.3 Electrochemical Migration |
|
|
445 | (1) |
|
17.3 Protection from the Environment |
|
|
446 | (3) |
|
17.3.1 Conformal Coatings |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
17.3.5 Corrosion Inhibitors |
|
|
449 | (1) |
|
17.3.6 Water-Displacing Compounds |
|
|
449 | (1) |
|
17.4 Corrosion Testing for Electronics in a Marine Environment |
|
|
449 | (1) |
|
|
450 | (1) |
|
|
451 | (2) |
18 Structural Alloys in Marine Service |
|
453 | (74) |
|
|
|
453 | (5) |
|
18.1.1 Cast Iron Metallurgy |
|
|
454 | (3) |
|
18.1.2 Cast Iron Corrosion Behavior |
|
|
457 | (1) |
|
|
458 | (15) |
|
18.2.1 Carbon Steel Chemistries |
|
|
460 | (3) |
|
18.2.1.1 Effects of Alloying Additions |
|
|
460 | (3) |
|
18.2.2 Surface Oxides/Corrosion Products |
|
|
463 | (1) |
|
|
464 | (4) |
|
|
468 | (5) |
|
|
473 | (8) |
|
18.3.1 Stainless Steel Types |
|
|
474 | (5) |
|
18.3.1.1 Austenitic Stainless Steels |
|
|
474 | (1) |
|
18.3.1.2 Ferritic Stainless Steels |
|
|
475 | (3) |
|
18.3.1.3 Martensitic Stainless Steels |
|
|
478 | (1) |
|
18.3.1.4 Duplex Stainless Steels |
|
|
478 | (1) |
|
18.3.1.5 Precipitation-Hardening Stainless Steels |
|
|
479 | (1) |
|
18.3.2 Corrosion Behavior of Stainless Steels |
|
|
479 | (2) |
|
18.3.3 Marine Uses of Stainless Steels |
|
|
481 | (1) |
|
18.4 Nickel and Nickel Alloys |
|
|
481 | (9) |
|
18.4.1 Corrosion Resistant Nickel and Nickel Alloys |
|
|
483 | (3) |
|
18.4.2 High-temperature Nickel Alloys - Superalloys |
|
|
486 | (4) |
|
18.5 Aluminum and Aluminum Alloys |
|
|
490 | (7) |
|
18.5.1 Aluminum Alloy Familites |
|
|
490 | (4) |
|
18.5.2 Heat Treatment of Aluminum Alloys |
|
|
494 | (2) |
|
18.5.3 Corrosion Behavior of Aluminum Alloys |
|
|
496 | (1) |
|
18.6 Copper and Copper Alloys |
|
|
497 | (9) |
|
18.6.1 General Corrosion and Mechanical Properties |
|
|
497 | (1) |
|
|
498 | (4) |
|
|
502 | (1) |
|
18.6.4 Copper-Nickel Alloys |
|
|
503 | (3) |
|
18.7 Titanium and Titanium Alloys |
|
|
506 | (4) |
|
18.7.1 Chemistry and Metallurgy of Titanium Alloys |
|
|
507 | (3) |
|
18.7.2 General Corrosion Behavior |
|
|
510 | (1) |
|
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service |
|
|
510 | (8) |
|
18.8.1 Surface Properties and Processes |
|
|
510 | (3) |
|
|
510 | (3) |
|
18.8.2 Material Bulk Properties |
|
|
513 | (1) |
|
18.8.3 Joining Effects on Materials |
|
|
514 | (4) |
|
18.8.4 Cathodic Protection |
|
|
518 | (1) |
|
|
518 | (7) |
|
Additional Reading and References |
|
|
525 | (2) |
19 Marine Coatings |
|
527 | (46) |
|
|
|
|
|
527 | (1) |
|
19.2 Characteristics of a Ideal Marine Coating |
|
|
528 | (4) |
|
19.3 Coating Degradation and Failures |
|
|
532 | (1) |
|
|
532 | (4) |
|
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion |
|
|
536 | (3) |
|
19.6 Coatings for Marine Service |
|
|
539 | (6) |
|
19.6.1 Metallized Coatings |
|
|
539 | (5) |
|
19.6.1.1 Metal-Containing Primers |
|
|
542 | (1) |
|
|
543 | (1) |
|
|
543 | (1) |
|
|
544 | (1) |
|
19.6.2.1 Coating Thickness Measurements |
|
|
544 | (1) |
|
19.7 Types of Coatings for Marine Vessels |
|
|
545 | (18) |
|
19.7.1 Conversion Coatings |
|
|
547 | (1) |
|
19.7.1.1 Hexavalent Chromate Conversion Coatings |
|
|
547 | (1) |
|
19.7.1.2 Hexavalent Chromate Alternatives |
|
|
547 | (1) |
|
19.7.1.3 Phosphate Coatings |
|
|
548 | (1) |
|
19.7.2 Organic Coatings and Nanocomposites |
|
|
548 | (1) |
|
|
549 | (1) |
|
|
550 | (1) |
|
19.7.5 Zinc-Rich Coatings |
|
|
550 | (1) |
|
|
551 | (1) |
|
|
552 | (1) |
|
19.7.8 Abrasion Resistant Coatings |
|
|
552 | (1) |
|
19.7.9 Cargo Tank Linings |
|
|
553 | (1) |
|
19.7.9.1 Tank Lining Chemical Resistance |
|
|
554 | (1) |
|
|
554 | (1) |
|
19.7.11 Ballast Tank Linings |
|
|
555 | (3) |
|
19.7.12 Cofferdam and Void Coatings |
|
|
558 | (1) |
|
19.7.13 Potable Water Tank Linings |
|
|
558 | (1) |
|
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces |
|
|
559 | (1) |
|
19.7.15 Deck Coatings - Including Heli-Deck Surfaces |
|
|
560 | (2) |
|
19.7.16 Hull Coatings - Freeboard Area |
|
|
562 | (1) |
|
19.7.17 Maintenance Painting Programs |
|
|
563 | (1) |
|
|
563 | (2) |
|
|
565 | (8) |
20 Biofouling Control |
|
573 | (20) |
|
|
20.1 The Nature of Biofouling |
|
|
573 | (1) |
|
20.2 Fouling Effects on Ships |
|
|
574 | (5) |
|
20.2.1 Control of Biofouling |
|
|
576 | (21) |
|
20.2.1.1 Biocidal Antifoulant Coatings |
|
|
576 | (3) |
|
20.3 Non-biocidal Antifoulant Methods and Coatings |
|
|
579 | (3) |
|
20.4 Maintenance, Monitoring, and Testing |
|
|
582 | (5) |
|
|
587 | (6) |
21 Cathodic Protection |
|
593 | (40) |
|
|
|
|
|
593 | (3) |
|
|
596 | (1) |
|
21.3 Methods of Applying Cathodic Protection |
|
|
597 | (7) |
|
21.3.1 Cathodic Protection Using Sacrificial Anodes |
|
|
597 | (3) |
|
21.3.2 Impressed Current Cathodic Protection (ICCP) |
|
|
600 | (4) |
|
21.3.2.1 Impressed Current Anodes Materials |
|
|
601 | (1) |
|
21.3.2.2 Sacrificial Anodes |
|
|
602 | (2) |
|
21.3.2.3 Impressed Current Cathodic Protection |
|
|
604 | (1) |
|
|
604 | (8) |
|
21.4.1 Calcareous Deposits and Impacts on Protection Criteria |
|
|
605 | (2) |
|
21.4.2 Polarization Characteristics Over Time |
|
|
607 | (1) |
|
21.4.3 Design Using Physical Scale Modeling |
|
|
608 | (1) |
|
21.4.4 Computer-Assisted Design |
|
|
609 | (1) |
|
21.4.5 Protective (Dielectric) Shields |
|
|
609 | (1) |
|
21.4.6 Protection Current Requirements |
|
|
610 | (1) |
|
21.4.7 Polarization Potential Criteria of Protection |
|
|
611 | (1) |
|
21.4.8 Automated Control Systems |
|
|
611 | (1) |
|
21.5 Cathodic Protection in Marine Service |
|
|
612 | (11) |
|
21.5.1 Small Boats and Large Commercial and Marine Vessels |
|
|
612 | (3) |
|
21.5.2 Offshore Structures |
|
|
615 | (2) |
|
21.5.3 Bridges, Wharves, and Jetties |
|
|
617 | (4) |
|
|
621 | (2) |
|
21.6 Concerns with the Use of Cathodic Protection |
|
|
623 | (3) |
|
21.6.1 Corrosion/Cathodic Protection Monitoring |
|
|
624 | (2) |
|
|
626 | (7) |
22 Corrosion Monitoring in Seawater |
|
633 | (20) |
|
|
|
633 | (1) |
|
22.2 Electrochemical Methods |
|
|
634 | (10) |
|
22.2.1 Linear Polarization Resistance |
|
|
634 | (2) |
|
22.2.2 Potential Measurements |
|
|
636 | (1) |
|
22.2.3 Electrochemical Impedance Spectroscopy |
|
|
637 | (4) |
|
22.2.4 Electrochemical Noise |
|
|
641 | (1) |
|
22.2.5 Electrochemical Frequency Modulation |
|
|
641 | (1) |
|
22.2.6 Wirebeam/Multielectrode Array Methods |
|
|
641 | (3) |
|
22.3 Non-Electrochemical Methods |
|
|
644 | (3) |
|
|
647 | (1) |
|
|
648 | (1) |
|
22.6 Summary and Conclusions |
|
|
649 | (1) |
|
|
650 | (3) |
23 Marine Fasteners |
|
653 | (14) |
|
|
|
653 | (1) |
|
|
654 | (1) |
|
23.3 General Fastener Design |
|
|
655 | (1) |
|
23.4 Fastener Materials Selection |
|
|
656 | (5) |
|
23.4.1 Standards and Specifications |
|
|
656 | (3) |
|
|
659 | (1) |
|
|
659 | (1) |
|
|
659 | (1) |
|
|
660 | (1) |
|
|
660 | (1) |
|
|
660 | (1) |
|
23.5 Fastener Behavior Above the Waterline |
|
|
661 | (1) |
|
23.6 Fastener Behavior in Submerged, Below the Waterline |
|
|
661 | (1) |
|
23.7 Corrosion Protection for Fasteners |
|
|
662 | (1) |
|
|
663 | (3) |
|
|
666 | (1) |
24 Marine and Offshore Piping Systems |
|
667 | (24) |
|
|
|
667 | (4) |
|
|
667 | (1) |
|
|
667 | (1) |
|
24.1.3 Firefighting Systems |
|
|
668 | (1) |
|
|
668 | (1) |
|
24.1.5 Fresh-Water Systems |
|
|
668 | (1) |
|
24.1.6 Fuel and Flammable Liquid Piping |
|
|
668 | (1) |
|
24.1.7 Ventilation Systems - Ships |
|
|
669 | (1) |
|
24.1.8 Hydrocarbon Piping (Oil and Gas) |
|
|
669 | (1) |
|
24.1.9 Vent System - Offshore |
|
|
669 | (1) |
|
|
669 | (1) |
|
24.1.11 Firewater Utility Piping |
|
|
669 | (1) |
|
|
670 | (1) |
|
|
670 | (1) |
|
24.2 Piping System Design |
|
|
671 | (1) |
|
|
672 | (2) |
|
24.4 Failure Modes of Piping Systems |
|
|
674 | (12) |
|
|
674 | (1) |
|
24.4.2 Pitting and Crevice Corrosion |
|
|
675 | (2) |
|
24.4.3 Galvanic Corrosion |
|
|
677 | (4) |
|
|
681 | (1) |
|
24.4.5 Erosion and Erosion Corrosion |
|
|
681 | (3) |
|
24.4.6 Variable Temperature Swings |
|
|
684 | (1) |
|
|
684 | (1) |
|
|
685 | (1) |
|
|
685 | (1) |
|
24.5 Corrosion Control Methods |
|
|
686 | (1) |
|
|
686 | (3) |
|
|
689 | (2) |
25 Corrosion Control and Preservation of Historic Marine Artifacts |
|
691 | (16) |
|
|
|
691 | (3) |
|
25.2 Basic Conservation Procedures |
|
|
694 | (1) |
|
25.2.1 Laboratory Conservation Procedures |
|
|
695 | (1) |
|
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts |
|
|
695 | (8) |
|
25.3.1 Corrosion and Conservation of Ferrous Alloys |
|
|
696 | (4) |
|
25.3.2 Corrosion and Conservation of Other Metals and Alloys |
|
|
700 | (2) |
|
25.3.2.1 Corrosion and Conservation of Copper Artifacts |
|
|
701 | (1) |
|
25.3.2.2 Corrosion and Conservation of Silver Artifacts |
|
|
701 | (1) |
|
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter |
|
|
702 | (1) |
|
|
703 | (2) |
|
|
705 | (1) |
|
Marine Archaeology Conservation |
|
|
705 | (2) |
Index |
|
707 | |