About the Authors |
|
xiii | |
Foreword |
|
xv | |
Preface |
|
xvii | |
Acknowledgments |
|
xix | |
Notation |
|
xxi | |
|
|
xxiii | |
Introduction |
|
1 | (6) |
|
Part I Magnetic Resonance Imaging |
|
|
7 | (54) |
|
1 Nuclear Magnetic Resonance |
|
|
9 | (14) |
|
1.1 Protons in a Magnetic Field |
|
|
9 | (1) |
|
1.2 Precession of Magnetization |
|
|
10 | (3) |
|
1.2.1 Quadrature Detection |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (2) |
|
|
15 | (2) |
|
|
17 | (1) |
|
1.6 Magnetic Resonance Imaging |
|
|
17 | (6) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.6.1.3 Frequency Encoding |
|
|
20 | (3) |
|
|
23 | (18) |
|
|
23 | (3) |
|
2.2 k-Space Sampling Strategies |
|
|
26 | (7) |
|
2.2.1 Segmented Image Acquisition |
|
|
27 | (1) |
|
2.2.1.1 Fast Low-Angle Shot (FLASH) |
|
|
27 | (1) |
|
2.2.1.2 Balanced Steady-State Free Precession (bSSFP) |
|
|
28 | (2) |
|
2.2.2 Echo-Planar Imaging (EPI) |
|
|
30 | (2) |
|
2.2.3 Non-Cartesian Imaging |
|
|
32 | (1) |
|
|
33 | (8) |
|
2.3.1 Fast Imaging Strategies |
|
|
33 | (1) |
|
2.3.2 Partial Fourier Imaging |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
2.3.4 Impact of Fast Imaging on SNR and Scan Time |
|
|
37 | (4) |
|
3 Motion Encoding and MRE Sequences |
|
|
41 | (20) |
|
|
43 | (14) |
|
3.1.1 Gradient Moment Nulling |
|
|
44 | (2) |
|
3.1.2 Encoding of Time-Harmonic Motion |
|
|
46 | (4) |
|
3.1.3 Fractional Encoding |
|
|
50 | (1) |
|
3.2 Intra-Voxel Phase Dispersion |
|
|
51 | |
|
3.3 Diffusion-Weighted MRE |
|
|
52 | (1) |
|
|
53 | (8) |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (4) |
|
|
61 | (84) |
|
|
63 | (68) |
|
|
63 | (4) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
4.5 Strain-Energy Function |
|
|
70 | (1) |
|
|
71 | (4) |
|
4.7 Engineering Constants |
|
|
75 | (5) |
|
4.7.1 Young's Modulus and Poisson's Ratio |
|
|
75 | (1) |
|
4.7.2 Shear Modulus and Lame's First Parameter |
|
|
76 | (1) |
|
4.7.3 Compressibility and Bulk Modulus |
|
|
77 | (2) |
|
4.7.4 Compliance and Elasticity Tensor for a Transversely Isotropic Material |
|
|
79 | (1) |
|
|
80 | (12) |
|
4.8.1 Elastic Model: Spring |
|
|
81 | (1) |
|
4.8.2 Viscous Model: Dashpot |
|
|
82 | (1) |
|
4.8.3 Combinations of Elastic and Viscous Elements |
|
|
83 | (6) |
|
4.8.4 Overview of Viscoelastic Models |
|
|
89 | (3) |
|
|
92 | (12) |
|
4.9.1 Balance of Momentum |
|
|
92 | (4) |
|
|
96 | (2) |
|
4.9.2.1 Complex Moduli and Wave Speed |
|
|
98 | (1) |
|
4.9.3 Navier--Stokes Equation |
|
|
99 | (1) |
|
4.9.4 Compression Modulus and Oscillating Volumetric Strain |
|
|
100 | (1) |
|
4.9.5 Elastodynamic Green's Function |
|
|
101 | (2) |
|
4.9.6 Boundary Conditions |
|
|
103 | (1) |
|
4.10 Waves in Anisotropic Media |
|
|
104 | (6) |
|
4.10.1 The Christoffel Equation |
|
|
105 | (1) |
|
4.10.2 Waves in a Transversely Isotropic Medium |
|
|
106 | (4) |
|
4.11 Energy Density and Flux |
|
|
110 | (4) |
|
4.11.1 Geometric Attenuation |
|
|
113 | (1) |
|
4.12 Shear Wave Scattering from Interfaces and Inclusions |
|
|
114 | (17) |
|
|
115 | (3) |
|
4.12.2 Spatial and Temporal Interfaces |
|
|
118 | (3) |
|
|
121 | (4) |
|
4.12.3.1 Green's Function of Waves and Diffusion Phenomena |
|
|
125 | (1) |
|
4.12.3.2 Amplitudes and Intensities of Diffusive Waves |
|
|
126 | (5) |
|
|
131 | (14) |
|
5.1 Navier's Equation for Biphasic Media |
|
|
133 | (9) |
|
5.1.1 Pressure Waves in Poroelastic Media |
|
|
136 | (4) |
|
5.1.2 Shear Waves in Poroelastic Media |
|
|
140 | (2) |
|
5.2 Poroelastic Signal Equation |
|
|
142 | (3) |
|
Part III Technical Aspects and Data Processing |
|
|
145 | (98) |
|
|
147 | (14) |
|
|
147 | (6) |
|
|
153 | (8) |
|
6.2.1 Technical Requirements |
|
|
153 | (1) |
|
|
153 | |
|
6.2.3 Types of Mechanical Transducers |
|
|
154 | (7) |
|
|
161 | (4) |
|
8 Numerical Methods and Postprocessing |
|
|
165 | (26) |
|
8.1 Noise and Denoising in MRE |
|
|
165 | (11) |
|
8.1.1 Denoising: An Overview |
|
|
165 | (2) |
|
8.1.2 Least Squares and Polynomial Fitting |
|
|
167 | (1) |
|
8.1.3 Frequency Domain (k-Space) Filtering |
|
|
168 | (1) |
|
|
168 | (2) |
|
8.1.3.2 LTI Filters in the Fourier Domain |
|
|
170 | (2) |
|
8.1.3.3 Band-Pass Filtering |
|
|
172 | (1) |
|
8.1.4 Wavelets and Multi-Resolution Analysis (MRA) |
|
|
172 | (2) |
|
8.1.5 FFT versus MRA in vivo |
|
|
174 | (1) |
|
8.1.6 Sparser Approximations and Performance Times |
|
|
175 | (1) |
|
|
176 | (3) |
|
8.3 Numerical Derivatives |
|
|
179 | (8) |
|
8.3.1 Matrix Representation of Derivative Operators |
|
|
182 | (1) |
|
8.3.2 Anderssen Gradients |
|
|
183 | (3) |
|
8.3.3 Frequency Response of Derivative Operators |
|
|
186 | (1) |
|
|
187 | (4) |
|
|
191 | (8) |
|
9.1 Flynn's Minimum Discontinuity Algorithm |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
196 | (3) |
|
10 Viscoelastic Parameter Reconstruction Methods |
|
|
199 | (30) |
|
10.1 Discretization and Noise |
|
|
201 | (3) |
|
|
204 | (1) |
|
10.3 Algebraic Helmholtz Inversion |
|
|
205 | (3) |
|
10.3.1 Multiparameter Inversion |
|
|
207 | (1) |
|
10.3.2 Helmholtz Decomposition |
|
|
207 | (1) |
|
10.4 Local Frequency Estimation |
|
|
208 | (2) |
|
10.5 Multifrequency Inversion |
|
|
210 | (4) |
|
10.5.1 Reconstruction of φ |
|
|
211 | (2) |
|
10.5.2 Reconstruction of |G*| |
|
|
213 | (1) |
|
|
214 | (3) |
|
10.7 Finite Element Method |
|
|
217 | (7) |
|
10.7.1 Weak Formulation of the One-Dimensional Wave Equation |
|
|
218 | (1) |
|
10.7.2 Discretization of the Problem Domain |
|
|
219 | (1) |
|
10.7.3 Basis Function in the Discretized Domain |
|
|
220 | (1) |
|
10.7.4 FE Formulation of the Wave Equation |
|
|
221 | (3) |
|
10.8 Direct Inversion for a Transverse Isotropic Medium |
|
|
224 | (1) |
|
10.9 Waveguide Elastography |
|
|
225 | (4) |
|
11 Multicomponent Acquisition |
|
|
229 | (4) |
|
12 Ultrasound Elastography |
|
|
233 | (10) |
|
|
235 | (1) |
|
12.2 Strain Rate Imaging (SRI) |
|
|
235 | (1) |
|
12.3 Acoustic Radiation Force Impulse (ARFI) Imaging |
|
|
235 | (2) |
|
12.4 Vibro-Acoustography (VA) |
|
|
237 | (1) |
|
12.5 Vibration-Amplitude Sonoelastography (VA Sono) |
|
|
237 | (1) |
|
12.6 Cardiac Time-Harmonic Elastography (Cardiac THE) |
|
|
237 | (1) |
|
12.7 Vibration Phase Gradient (PG) Sonoelastography |
|
|
238 | (1) |
|
12.8 Time-Harmonic Elastography (1D/2D THE) |
|
|
238 | (1) |
|
12.9 Crawling Waves (CW) Sonoelastography |
|
|
238 | (1) |
|
12.10 Electromechanical Wave Imaging (EWI) |
|
|
239 | (1) |
|
12.11 Pulse Wave Imaging (PWI) |
|
|
239 | (1) |
|
12.12 Transient Elastography (TE) |
|
|
240 | (1) |
|
12.13 Point Shear Wave Elastography (pSWE) |
|
|
240 | (1) |
|
12.14 Shear Wave Elasticity Imaging (SWEI) |
|
|
240 | (1) |
|
12.15 Comb-Push Ultrasound Shear Elastography (CUSE) |
|
|
241 | (1) |
|
12.16 Supersonic Shear Imaging (SSI) |
|
|
241 | (1) |
|
12.17 Spatially Modulated Ultrasound Radiation Force (SMURF) |
|
|
241 | (1) |
|
12.18 Shear Wave Dispersion Ultrasound Vibrometry (SDUV) |
|
|
241 | (1) |
|
12.19 Harmonic Motion Imaging (HMI) |
|
|
242 | (1) |
|
Part IV Clinical Applications |
|
|
243 | (108) |
|
|
245 | (18) |
|
13.1 Normal Heart Physiology |
|
|
245 | (5) |
|
13.1.1 Cardiac Fiber Anatomy |
|
|
247 | (2) |
|
13.1.2 Wall Shear Modulus versus Cavity Pressure |
|
|
249 | (1) |
|
13.2 Clinical Motivation for Cardiac MRE |
|
|
250 | (2) |
|
13.2.1 Systolic Dysfunction versus Diastolic Dysfunction |
|
|
250 | (2) |
|
13.3 Cardiac Elastography |
|
|
252 | (11) |
|
|
253 | (1) |
|
|
253 | (1) |
|
13.3.3 In vivo Cardiac MRE in Pigs |
|
|
254 | (2) |
|
13.3.4 In vivo Cardiac MRE in Humans |
|
|
256 | (1) |
|
13.3.4.1 Steady-State MRE (WAV-MRE) |
|
|
256 | (3) |
|
13.3.4.2 Wave Inversion Cardiac MRE |
|
|
259 | (1) |
|
|
260 | (3) |
|
|
263 | (20) |
|
14.1 General Aspects of Brain MRE |
|
|
264 | (1) |
|
|
264 | (1) |
|
14.1.2 Determinants of Brain Stiffness |
|
|
264 | (1) |
|
14.1.3 Challenges for Cerebral MRE |
|
|
264 | (1) |
|
14.2 Technical Aspects of Brain MRE |
|
|
265 | (12) |
|
14.2.1 Clinical Setup for Cerebral MRE |
|
|
265 | (1) |
|
14.2.2 Choice of Vibration Frequency |
|
|
266 | (3) |
|
14.2.3 Driver-Free Cerebral MRE |
|
|
269 | (1) |
|
14.2.4 MRE in the Mouse Brain |
|
|
270 | (7) |
|
|
277 | (6) |
|
14.3.1 Brain Stiffness Changes with Age |
|
|
272 | (1) |
|
14.3.2 Male Brains Are Softer than Female Brains |
|
|
273 | (1) |
|
14.3.3 Regional Variation in Brain Stiffness |
|
|
274 | (1) |
|
14.3.4 Anisotropic Properties of Brain Tissue |
|
|
274 | (2) |
|
14.3.5 The in vivo Brain Is Compressible |
|
|
276 | (1) |
|
14.3.6 Preliminary Findings of MRE with Functional Activation |
|
|
277 | (1) |
|
14.3.7 Demyelination and Inflammation Reduce Brain Stiffness |
|
|
277 | (2) |
|
14.3.8 Neurodegeneration Reduces Brain Stiffness |
|
|
279 | (1) |
|
14.3.9 The Number of Neurons Correlates with Brain Stiffness |
|
|
280 | (1) |
|
14.3.10 Preliminary Conclusions on MRE of the Brain |
|
|
280 | (3) |
|
15 MRE of Abdomen, Pelvis, and Intervertebral Disc |
|
|
283 | (42) |
|
|
283 | (28) |
|
15.1.1 Epidemiology of Chronic Liver Diseases |
|
|
286 | (1) |
|
|
287 | (2) |
|
15.1.2.1 Pathogenesis of Liver Fibrosis |
|
|
289 | (2) |
|
15.1.2.2 Staging of Liver Fibrosis |
|
|
291 | |
|
15.1.2.3 Noninvasive Screening Methods for Liver Fibrosis |
|
|
292 | (1) |
|
15.1.2.4 Reversibility of Liver Fibrosis |
|
|
293 | (1) |
|
15.1.2.5 Biophysical Signs of Liver Fibrosis |
|
|
293 | (1) |
|
|
294 | (1) |
|
15.1.3.1 MRE in Animal Models of Hepatic Fibrosis and Liver Tissue Samples |
|
|
294 | (1) |
|
15.1.3.2 Early Clinical Studies and Further Developments |
|
|
295 | (8) |
|
15.1.3.3 MRE of Nonalcoholic Fatty Liver Disease |
|
|
303 | (1) |
|
15.1.3.4 Comparison with other Noninvasive Imaging and Serum Biomarkers |
|
|
304 | (3) |
|
15.1.3.5 MRE of the Liver for Assessing Portal Hypertension |
|
|
307 | (2) |
|
15.1.3.6 MRE in Liver Grafts |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (3) |
|
|
311 | (3) |
|
|
314 | (1) |
|
15.3.1 MRE of the Pancreas |
|
|
315 | (1) |
|
|
315 | (3) |
|
15.4.1 MRE of the Kidneys |
|
|
316 | (2) |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
319 | (2) |
|
15.6.1 MRE of the Prostate |
|
|
320 | (1) |
|
|
321 | (4) |
|
15.7.1 MRE of the Intervertebral Disc |
|
|
322 | (3) |
|
16 MRE of Skeletal Muscle |
|
|
325 | (8) |
|
16.1 In vivo MRE of Healthy Muscles |
|
|
326 | (4) |
|
16.2 MRE in Muscle Diseases |
|
|
330 | (3) |
|
17 Elastography of Tumors |
|
|
333 | (18) |
|
17.1 Micromechanical Properties of Tumors |
|
|
333 | (3) |
|
17.2 Ultrasound Elastography of Tumors |
|
|
336 | (3) |
|
17.2.1 Ultrasound Elastography in Breast Tumors |
|
|
337 | (1) |
|
17.2.2 Ultrasound Elastography in Prostate Cancer |
|
|
338 | (1) |
|
|
339 | (12) |
|
17.3.1 MRE of Tumors in the Mouse |
|
|
340 | (2) |
|
17.3.2 MRE in Liver Tumors |
|
|
342 | (2) |
|
17.3.3 MRE of Prostate Cancer |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
345 | (1) |
|
17.3.4 MRE of Breast Tumors |
|
|
345 | (1) |
|
17.3.4.1 In Vivo MRE of Breast Tumors |
|
|
346 | (1) |
|
17.3.5 MRE of Intracranial Tumors |
|
|
347 | (4) |
|
|
351 | (4) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
353 | (2) |
|
A Simulating the Bloch Equations |
|
|
355 | (2) |
|
B Proof that Eq. (3.8) Is Sinusoidal |
|
|
357 | (2) |
|
|
359 | (2) |
|
D Wave Intensity Distributions |
|
|
361 | (6) |
|
D.1 Calculation of Intensity Probabilities |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (2) |
|
|
365 | (2) |
References |
|
367 | (50) |
Index |
|
417 | |