Chapter 1 Scalars and Vectors |
|
1 | (68) |
|
1.1 Vectors And Arithmetics |
|
|
1 | (2) |
|
1.2 Rotations And Basis Changes |
|
|
3 | (3) |
|
|
6 | (4) |
|
1.3.1 The Kronecker delta and the permutation symbol |
|
|
6 | (1) |
|
1.3.2 Vector algebra using index notation |
|
|
7 | (3) |
|
|
10 | (14) |
|
|
12 | (1) |
|
|
13 | (4) |
|
|
13 | (1) |
|
1.4.2.2 Surface integrals |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.4.3 Differential operators and fields |
|
|
17 | (7) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (2) |
|
1.4.3.4 The directional derivative |
|
|
22 | (1) |
|
1.4.3.5 Second order operators |
|
|
22 | (1) |
|
1.4.3.6 Coordinate independence |
|
|
23 | (1) |
|
|
24 | (8) |
|
1.5.1 Line integral of a gradient |
|
|
24 | (1) |
|
1.5.2 The divergence theorem |
|
|
25 | (4) |
|
|
29 | (1) |
|
|
29 | (2) |
|
1.5.5 General integral theorems |
|
|
31 | (1) |
|
1.6 Non-Cartesian Coordinate Systems |
|
|
32 | (17) |
|
|
32 | (6) |
|
1.6.1.1 Tangent vector basis |
|
|
34 | (1) |
|
|
35 | (3) |
|
1.6.2 Orthogonal coordinates |
|
|
38 | (4) |
|
1.6.2.1 Integration in orthogonal coordinates |
|
|
39 | (1) |
|
1.6.2.2 Differentiation in orthogonal coordinates |
|
|
40 | (2) |
|
1.6.3 Polar and cylinder coordinates |
|
|
42 | (2) |
|
1.6.4 Spherical coordinates |
|
|
44 | (5) |
|
|
49 | (10) |
|
|
49 | (4) |
|
|
53 | (4) |
|
1.7.3 Scalar and vector potentials |
|
|
57 | (2) |
|
|
59 | (10) |
Chapter 2 Tensors |
|
69 | (58) |
|
2.1 Outer Products And Tensor Bases |
|
|
71 | (3) |
|
2.1.1 General coordinate bases |
|
|
72 | (2) |
|
|
74 | (5) |
|
2.2.1 Tensors and symmetries |
|
|
75 | (3) |
|
|
78 | (1) |
|
2.3 Tensor Fields And Derivatives |
|
|
79 | (17) |
|
|
80 | (3) |
|
2.3.1.1 Distances and the metric tensor |
|
|
81 | (1) |
|
2.3.1.2 Lowering and raising indices |
|
|
82 | (1) |
|
2.3.2 Derivatives of tensor fields |
|
|
83 | (6) |
|
2.3.2.1 The covariant derivative |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (4) |
|
2.3.4 The generalised Kronecker delta |
|
|
93 | (2) |
|
2.3.5 Orthogonal coordinates |
|
|
95 | (1) |
|
2.4 Tensors In Cartesian Coordinates |
|
|
96 | (2) |
|
|
98 | (6) |
|
2.5.1 Integration of tensors in Cartesian coordinates |
|
|
98 | (4) |
|
2.5.1.1 Volume integration |
|
|
98 | (1) |
|
2.5.1.2 Surface integrals |
|
|
99 | (1) |
|
|
100 | (1) |
|
2.5.1.4 Integral theorems |
|
|
101 | (1) |
|
2.5.2 The volume element and general coordinates |
|
|
102 | (2) |
|
|
104 | (15) |
|
|
105 | (5) |
|
2.6.1.1 The stress tensor |
|
|
105 | (2) |
|
2.6.1.2 The strain tensor |
|
|
107 | (2) |
|
2.6.1.3 The stiffness and compliance tensors |
|
|
109 | (1) |
|
|
110 | (5) |
|
2.6.2.1 The magnetic field tensor |
|
|
111 | (1) |
|
2.6.2.2 The Maxwell stress tensor |
|
|
111 | (2) |
|
2.6.2.3 The conductivity and resistivity tensors |
|
|
113 | (2) |
|
2.6.3 Classical mechanics |
|
|
115 | (19) |
|
2.6.3.1 The moment of inertia tensor |
|
|
115 | (2) |
|
2.6.3.2 The generalised inertia tensor |
|
|
117 | (2) |
|
|
119 | (8) |
Chapter 3 Partial Differential Equations and Modelling |
|
127 | (68) |
|
3.1 A Quick Note On Notation |
|
|
127 | (1) |
|
3.2 Intensive And Extensive Properties |
|
|
128 | (2) |
|
3.3 The Continuity Equation |
|
|
130 | (4) |
|
3.4 The Diffusion And Heat Equations |
|
|
134 | (4) |
|
3.4.1 Diffusion and Fick's laws |
|
|
134 | (2) |
|
3.4.2 Heat conduction and Fourier's law |
|
|
136 | (1) |
|
3.4.3 Additional convection currents |
|
|
137 | (1) |
|
|
138 | (6) |
|
3.5.1 Transversal waves on a string |
|
|
139 | (2) |
|
3.5.1.1 Wave equation as an application of continuity |
|
|
140 | (1) |
|
3.5.2 Transversal waves on a membrane |
|
|
141 | (2) |
|
3.5.3 Electromagnetic waves |
|
|
143 | (1) |
|
3.6 Boundary And Initial Conditions |
|
|
144 | (7) |
|
3.6.1 Boundary conditions |
|
|
145 | (3) |
|
3.6.1.1 Dirichlet conditions |
|
|
145 | (1) |
|
3.6.1.2 Neumann conditions |
|
|
146 | (1) |
|
3.6.1.3 Robin boundary conditions |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (3) |
|
|
154 | (3) |
|
3.9 The Cauchy Momentum Equations |
|
|
157 | (8) |
|
|
159 | (2) |
|
3.9.2 Navier-Stokes equations |
|
|
161 | (3) |
|
3.9.3 Incompressible flow |
|
|
164 | (1) |
|
3.10 Superposition And Inhomogeneities |
|
|
165 | (3) |
|
3.10.1 Removing inhomogeneities from boundaries |
|
|
166 | (1) |
|
3.10.2 Using known solutions |
|
|
167 | (1) |
|
3.11 Modelling Thin Volumes |
|
|
168 | (2) |
|
3.12 Dimensional Analysis |
|
|
170 | (9) |
|
|
172 | (2) |
|
3.12.2 The Buckingham π theorem |
|
|
174 | (3) |
|
3.12.3 Dimensional analysis and modelling |
|
|
177 | (1) |
|
3.12.4 Parameters as units |
|
|
178 | (1) |
|
3.13 Modelling With Delta Functions |
|
|
179 | (5) |
|
3.13.1 Coordinate transformations |
|
|
180 | (1) |
|
3.13.2 Lines and surfaces |
|
|
181 | (3) |
|
|
184 | (11) |
Chapter 4 Symmetries and Group Theory |
|
195 | (68) |
|
|
195 | (3) |
|
|
198 | (7) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (7) |
|
|
207 | (1) |
|
|
208 | (3) |
|
4.3.2.1 Dihedral groups and three dimensions |
|
|
209 | (2) |
|
4.3.3 The symmetric group and permutations |
|
|
211 | (1) |
|
|
212 | (11) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (6) |
|
4.4.3.1 The orthogonal group |
|
|
218 | (3) |
|
4.4.3.2 The unitary group |
|
|
221 | (2) |
|
4.5 Representation Theory |
|
|
223 | (6) |
|
4.5.1 Tensor products and direct sums |
|
|
224 | (3) |
|
4.5.2 Reducible representations |
|
|
227 | (2) |
|
4.6 Physical Implications And Examples |
|
|
229 | (10) |
|
4.6.1 Reduction of possible form of solutions |
|
|
229 | (3) |
|
4.6.2 Important transformations in physics |
|
|
232 | (7) |
|
4.6.2.1 Time translations and reversal |
|
|
232 | (2) |
|
4.6.2.2 Spatial reflections (parity) |
|
|
234 | (3) |
|
4.6.2.3 Galilei transformations |
|
|
237 | (2) |
|
4.7 IRREPS And Characters |
|
|
239 | (14) |
|
4.7.1 Irreducible representations |
|
|
239 | (1) |
|
4.7.2 Schur's lemmas and the orthogonality theorem |
|
|
240 | (2) |
|
|
242 | (5) |
|
4.7.3.1 Orthogonality of characters |
|
|
244 | (1) |
|
4.7.3.2 Decomposition into irreps |
|
|
245 | (2) |
|
|
247 | (6) |
|
|
253 | (1) |
|
|
254 | (9) |
Chapter 5 Function Spaces |
|
263 | (72) |
|
5.1 Abstract Vector Spaces |
|
|
263 | (7) |
|
5.1.1 Inner products and completeness |
|
|
265 | (3) |
|
5.1.1.1 Geometry in inner product spaces |
|
|
266 | (1) |
|
5.1.1.2 Convergence of series |
|
|
267 | (1) |
|
5.1.2 Function spaces as vector spaces |
|
|
268 | (2) |
|
5.1.2.1 Inner products on function spaces |
|
|
269 | (1) |
|
5.2 Operators And Eigenvalues |
|
|
270 | (6) |
|
5.2.1 Application of operators in finite spaces |
|
|
270 | (3) |
|
5.2.2 Operators on inner product spaces |
|
|
273 | (3) |
|
5.2.2.1 Differential operators and discretisation |
|
|
274 | (2) |
|
5.3 Sturm-Liouville Theory |
|
|
276 | (7) |
|
5.3.1 Regular Sturm-Liouville problems |
|
|
277 | (4) |
|
5.3.1.1 Sturm-Liouville's theorem |
|
|
279 | (2) |
|
5.3.2 Periodic and singular Sturm-Liouville problems |
|
|
281 | (2) |
|
5.4 Separation Of Variables |
|
|
283 | (5) |
|
5.4.1 Separation and Sturm-Liouville problems |
|
|
284 | (4) |
|
|
288 | (28) |
|
|
289 | (11) |
|
|
291 | (7) |
|
5.5.1.2 Modified Bessel functions |
|
|
298 | (2) |
|
5.5.2 Spherical coordinates |
|
|
300 | (13) |
|
5.5.2.1 Legendre polynomials and associated Legendre functions |
|
|
301 | (5) |
|
5.5.2.2 Spherical harmonics |
|
|
306 | (3) |
|
5.5.2.3 Spherical Bessel functions |
|
|
309 | (4) |
|
|
313 | (3) |
|
5.6 Function Spaces As Representations |
|
|
316 | (4) |
|
|
317 | (3) |
|
|
320 | (4) |
|
5.7.1 Distribution derivatives |
|
|
322 | (2) |
|
|
324 | (11) |
Chapter 6 Eigenfunction Expansions |
|
335 | (66) |
|
6.1 Poisson's Equation And Series |
|
|
335 | (10) |
|
|
335 | (3) |
|
6.1.2 Inhomogeneous boundary conditions |
|
|
338 | (4) |
|
6.1.2.1 Transferring inhomogeneities |
|
|
341 | (1) |
|
6.1.3 General inhomogeneities |
|
|
342 | (3) |
|
|
342 | (2) |
|
6.1.3.2 Transferring inhomogeneities |
|
|
344 | (1) |
|
6.2 Stationary And Steady State Solutions |
|
|
345 | (3) |
|
6.2.1 Removing inhomogeneities |
|
|
346 | (2) |
|
6.3 Diffusion And Heat Equations |
|
|
348 | (10) |
|
|
348 | (3) |
|
6.3.2 Constant source terms |
|
|
351 | (2) |
|
|
353 | (5) |
|
6.3.4 Time-dependent sources |
|
|
358 | (1) |
|
|
358 | (8) |
|
6.4.1 Inhomogeneous sources and initial conditions |
|
|
358 | (3) |
|
|
361 | (1) |
|
|
362 | (4) |
|
6.5 Terminating The Series |
|
|
366 | (5) |
|
6.5.1 Heat and diffusion equations |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (6) |
|
6.6.1 Domains with a boundary |
|
|
374 | (3) |
|
6.6.1.1 The Fourier sine and cosine transforms |
|
|
375 | (1) |
|
6.6.1.2 Hankel transforms |
|
|
376 | (1) |
|
|
377 | (7) |
|
6.7.1 Mixed series and transforms |
|
|
381 | (3) |
|
6.8 Discrete And Continuous Spectra |
|
|
384 | (4) |
|
|
388 | (13) |
Chapter 7 Green's Functions |
|
401 | (68) |
|
7.1 What Are Green's Functions? |
|
|
401 | (2) |
|
7.2 Green's Functions In One Dimension |
|
|
403 | (12) |
|
7.2.1 Inhomogeneous initial conditions |
|
|
408 | (4) |
|
7.2.2 Sturm-Liouville operators and inhomogeneities in the boundary conditions |
|
|
412 | (2) |
|
7.2.3 The general structure of Green's function solutions |
|
|
414 | (1) |
|
|
415 | (6) |
|
7.3.1 Hadamard's method of descent |
|
|
418 | (3) |
|
|
421 | (2) |
|
|
423 | (9) |
|
7.5.1 One-dimensional wave propagation |
|
|
424 | (2) |
|
7.5.2 Three-dimensional wave propagation |
|
|
426 | (2) |
|
7.5.3 Two-dimensional wave propagation |
|
|
428 | (1) |
|
|
428 | (4) |
|
7.6 Problems With A Boundary |
|
|
432 | (16) |
|
7.6.1 Inhomogeneous boundary conditions |
|
|
432 | (2) |
|
|
434 | (8) |
|
|
438 | (4) |
|
7.6.3 Spherical boundaries and Poisson's equation |
|
|
442 | (4) |
|
|
446 | (2) |
|
|
448 | (8) |
|
|
452 | (4) |
|
|
456 | (13) |
Chapter 8 Variational Calculus |
|
469 | (66) |
|
|
469 | (2) |
|
8.2 Functional Optimisation |
|
|
471 | (9) |
|
8.2.1 Euler-Lagrange equations |
|
|
473 | (3) |
|
8.2.1.1 Natural boundary conditions |
|
|
474 | (2) |
|
8.2.2 Higher order derivatives |
|
|
476 | (2) |
|
8.2.3 Comparison to finite spaces |
|
|
478 | (2) |
|
|
480 | (4) |
|
8.3.1 Integrand independent of the function |
|
|
481 | (1) |
|
8.3.2 Integrand independent of the variable |
|
|
482 | (2) |
|
8.4 Optimisation With Constraints |
|
|
484 | (9) |
|
8.4.1 Lagrange multipliers |
|
|
486 | (4) |
|
8.4.1.1 Several constraints |
|
|
489 | (1) |
|
8.4.2 Isoperimetric constraints |
|
|
490 | (2) |
|
8.4.3 Holonomic constraints |
|
|
492 | (1) |
|
|
493 | (3) |
|
8.6 Functionals And Higher-Dimensional Spaces |
|
|
496 | (6) |
|
|
499 | (3) |
|
8.7 Basic Variational Principles In Physics |
|
|
502 | (7) |
|
|
502 | (3) |
|
8.7.2 Hamilton's principle |
|
|
505 | (7) |
|
8.7.2.1 Constants of motion |
|
|
507 | (2) |
|
8.8 Modelling With Variational Calculus |
|
|
509 | (3) |
|
8.9 Variational Methods In Eigenvalue Problems |
|
|
512 | (9) |
|
|
515 | (2) |
|
8.9.2 The Rayleigh-Ritz method |
|
|
517 | (21) |
|
8.9.2.1 Finite element method |
|
|
519 | (2) |
|
|
521 | (14) |
Chapter 9 Calculus on Manifolds |
|
535 | (68) |
|
|
535 | (3) |
|
9.2 Formalisation Of Vectors |
|
|
538 | (10) |
|
|
540 | (3) |
|
|
542 | (1) |
|
|
543 | (3) |
|
9.2.2.1 Differentials as dual vectors |
|
|
545 | (1) |
|
|
546 | (2) |
|
9.3 Derivative Operations |
|
|
548 | (17) |
|
|
548 | (1) |
|
|
549 | (5) |
|
9.3.2.1 Coordinate transformations |
|
|
552 | (1) |
|
9.3.2.2 Affine connections and tensor fields |
|
|
553 | (1) |
|
|
554 | (3) |
|
|
557 | (4) |
|
|
561 | (4) |
|
|
565 | (8) |
|
|
566 | (1) |
|
|
567 | (3) |
|
9.4.3 The Levi-Civita connection |
|
|
570 | (2) |
|
9.4.4 Curvature revisited |
|
|
572 | (1) |
|
9.5 Integration On Manifolds |
|
|
573 | (14) |
|
|
574 | (3) |
|
9.5.1.1 The exterior derivative |
|
|
576 | (1) |
|
9.5.2 Integration of differential forms |
|
|
577 | (3) |
|
|
580 | (5) |
|
9.5.4 The continuity equation revisited |
|
|
585 | (18) |
|
|
585 | (1) |
|
9.5.4.2 Production, concentration, and continuity |
|
|
586 | (1) |
|
|
587 | (5) |
|
|
592 | (11) |
Chapter 10 Classical Mechanics and Field Theory |
|
603 | (88) |
|
|
603 | (12) |
|
10.1.1 Motion of a rigid body |
|
|
604 | (2) |
|
10.1.2 Dynamics of a rigid body |
|
|
606 | (5) |
|
10.1.3 Dynamics in non-inertial frames |
|
|
611 | (4) |
|
10.2 Lagrangian Mechanics |
|
|
615 | (17) |
|
10.2.1 Configuration space |
|
|
616 | (2) |
|
10.2.2 Finite number of degrees of freedom |
|
|
618 | (3) |
|
10.2.3 Non-inertial frames in Lagrangian mechanics |
|
|
621 | (1) |
|
|
622 | (3) |
|
10.2.5 Effective potentials |
|
|
625 | (7) |
|
10.3 Central Potentials And Planar Motion |
|
|
632 | (11) |
|
10.3.1 The two-body problem and Kepler's laws |
|
|
638 | (3) |
|
10.3.2 The restricted three-body problem |
|
|
641 | (2) |
|
10.4 Hamiltonian Mechanics |
|
|
643 | (18) |
|
|
643 | (3) |
|
|
646 | (3) |
|
|
649 | (3) |
|
10.4.4 Liouville's theorem |
|
|
652 | (3) |
|
10.4.5 Canonical transformations |
|
|
655 | (3) |
|
10.4.6 Phase space flows and symmetries |
|
|
658 | (3) |
|
10.5 Manifolds And Classical Mechanics |
|
|
661 | (8) |
|
10.5.1 The Lagrangian formalism revisited |
|
|
661 | (3) |
|
10.5.2 The Hamiltonian formalism revisited |
|
|
664 | (5) |
|
|
669 | (7) |
|
10.6.1 Noether's theorem revisited |
|
|
671 | (3) |
|
10.6.2 Symmetries of the wave equation |
|
|
674 | (2) |
|
|
676 | (15) |
Appendix A Reference material |
|
691 | (14) |
|
A.1 Groups And Character Tables |
|
|
691 | (2) |
|
|
691 | (1) |
|
|
691 | (1) |
|
|
691 | (1) |
|
|
691 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
693 | (1) |
|
|
693 | (1) |
|
A.2 Differential Operators In Orthogonal Coordinates |
|
|
693 | (1) |
|
A.2.1 General expressions |
|
|
693 | (1) |
|
A.2.2 Cylinder coordinates |
|
|
694 | (1) |
|
A.2.3 Spherical coordinates |
|
|
694 | (1) |
|
A.3 Special Functions And Their Properties |
|
|
694 | (7) |
|
|
694 | (1) |
|
|
695 | (2) |
|
|
695 | (1) |
|
A.3.2.2 Modified Bessel functions |
|
|
695 | (1) |
|
A.3.2.3 Integral representations |
|
|
695 | (1) |
|
|
695 | (1) |
|
A.3.2.5 Relations among Bessel functions |
|
|
695 | (1) |
|
|
696 | (1) |
|
A.3.2.7 Orthogonality relations |
|
|
696 | (1) |
|
A.3.2.8 Bessel function zeros |
|
|
696 | (1) |
|
A.3.3 Spherical Bessel functions |
|
|
697 | (1) |
|
A.3.3.1 Spherical Bessel functions |
|
|
697 | (1) |
|
A.3.3.2 Relation to Bessel functions |
|
|
697 | (1) |
|
A.3.3.3 Explicit expressions |
|
|
697 | (1) |
|
A.3.3.4 Rayleigh formulas |
|
|
697 | (1) |
|
A.3.3.5 Relations among spherical Bessel functions |
|
|
698 | (1) |
|
A.3.3.6 Orthogonality relations |
|
|
698 | (1) |
|
A.3.3.7 Spherical Bessel function zeros |
|
|
698 | (1) |
|
|
698 | (2) |
|
A.3.4.1 Legendre functions |
|
|
698 | (1) |
|
A.3.4.2 Rodrigues' formula |
|
|
699 | (1) |
|
A.3.4.3 Relation among Legendre polynomials |
|
|
699 | (1) |
|
A.3.4.4 Explicit expressions |
|
|
699 | (1) |
|
A.3.4.5 Associated Legendre functions |
|
|
699 | (1) |
|
A.3.4.6 Orthogonality relations |
|
|
699 | (1) |
|
A.3.5 Spherical harmonics |
|
|
700 | (1) |
|
A.3.5.1 Spherical harmonics |
|
|
700 | (1) |
|
A.3.5.2 Expression in terms of associated Legendre functions |
|
|
700 | (1) |
|
A.3.5.3 Orthogonality relation |
|
|
700 | (1) |
|
|
700 | (1) |
|
A.3.6 Hermite polynomials |
|
|
700 | (1) |
|
A.3.6.1 Hermite polynomials |
|
|
700 | (1) |
|
A.3.6.2 Explicit expressions |
|
|
701 | (1) |
|
A.3.6.3 Creation operators |
|
|
701 | (1) |
|
A.3.6.4 Hermite functions |
|
|
701 | (1) |
|
A.3.6.5 Orthogonality relations |
|
|
701 | (1) |
|
|
701 | (4) |
|
|
701 | (1) |
|
|
702 | (1) |
|
|
702 | (3) |
|
|
702 | (3) |
Index |
|
705 | |