Muutke küpsiste eelistusi

E-raamat: Mathematics for Modeling and Scientific Computing [Wiley Online]

  • Formaat: 472 pages
  • Ilmumisaeg: 11-Nov-2016
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1119371120
  • ISBN-13: 9781119371120
  • Wiley Online
  • Hind: 174,45 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 472 pages
  • Ilmumisaeg: 11-Nov-2016
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1119371120
  • ISBN-13: 9781119371120

This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.

Preface ix
Chapter 1 Ordinary Differential Equations
1(140)
1.1 Introduction to the theory of ordinary differential equations
1(26)
1.1.1 Existence--uniqueness of first-order ordinary differential equations
1(10)
1.1.2 The concept of maximal solution
11(5)
1.1.3 Linear systems with constant coefficients
16(4)
1.1.4 Higher-order differential equations
20(1)
1.1.5 Inverse function theorem and implicit function theorem
21(6)
1.2 Numerical simulation of ordinary differential equations, Euler schemes, notions of convergence, consistence and stability
27(75)
1.2.1 Introduction
27(2)
1.2.2 Fundamental notions for the analysis of numerical ODE methods
29(4)
1.2.3 Analysis of explicit and implicit Euler schemes
33(17)
1.2.4 Higher-order schemes
50(1)
1.2.5 Leslie's equation (Perron--Frobenius theorem, power method)
51(27)
1.2.6 Modeling red blood cell agglomeration
78(9)
1.2.7 SEI model
87(6)
1.2.8 A chemotaxis problem
93(9)
1.3 Hamiltonian problems
102(39)
1.3.1 The pendulum problem
106(6)
1.3.2 Symplectic matrices; symplectic schemes
112(13)
1.3.3 Kepler problem
125(4)
1.3.4 Numerical results
129(12)
Chapter 2 Numerical Simulation of Stationary Partial Differential Equations: Elliptic Problems
141(126)
2.1 Introduction
141(25)
2.1.1 The ID model problem; elements of modeling and analysis
144(11)
2.1.2 A radiative transfer problem
155(8)
2.1.3 Analysis elements for multidimensional problems
163(3)
2.2 Finite difference approximations to elliptic equations
166(14)
2.2.1 Finite difference discretization principles
166(7)
2.2.2 Analysis of the discrete problem
173(7)
2.3 Finite volume approximation of elliptic equations
180(11)
2.3.1 Discretization principles for finite volumes
180(7)
2.3.2 Discontinuous coefficients
187(2)
2.3.3 Multidimensional problems
189(2)
2.4 Finite element approximations of elliptic equations
191(13)
2.4.1 P1 approximation in one dimension
191(6)
2.4.2 P2 approximations in one dimension
197(3)
2.4.3 Finite element methods, extension to higher dimensions
200(4)
2.5 Numerical comparison of FD, FV and FE methods
204(1)
2.6 Spectral methods
205(12)
2.7 Poisson--Boltzmann equation; minimization of a convex function, gradient descent algorithm
217(7)
2.8 Neumann conditions: the optimization perspective
224(4)
2.9 Charge distribution on a cord
228(7)
2.10 Stokes problem
235(32)
Chapter 3 Numerical Simulations of Partial Differential Equations: Time-dependent Problems
267(140)
3.1 Diffusion equations
267(24)
3.1.1 L2 stability (von Neumann analysis) and L∞ stability: convergence
269(7)
3.1.2 Implicit schemes
276(5)
3.1.3 Finite element discretization
281(2)
3.1.4 Numerical illustrations
283(8)
3.2 From transport equations towards conservation laws
291(54)
3.2.1 Introduction
291(4)
3.2.2 Transport equation: method of characteristics
295(4)
3.2.3 Upwinding principles: upwind scheme
299(2)
3.2.4 Linear transport at constant speed; analysis of FD and FV schemes
301(25)
3.2.5 Two-dimensional simulations
326(3)
3.2.6 The dynamics of prion proliferation
329(16)
3.3 Wave equation
345(9)
3.4 Nonlinear problems: conservation laws
354(53)
3.4.1 Scalar conservation laws
354(33)
3.4.2 Systems of conservation laws
387(6)
3.4.3 Kinetic schemes
393(14)
Appendices
407(40)
Appendix 1
409(8)
Appendix 2
417(10)
Appendix 3
427(6)
Appendix 4
433(10)
Appendix 5
443(4)
Bibliography 447(8)
Index 455
Thierry GOUDON, Senior research scientist INRIA, Sophia Antipolis Mediterranee Research Centre & Labo. J. A. Dieudonne, University of Nice Sophia Antipolis & CNRS, France