Muutke küpsiste eelistusi

E-raamat: Mechanics of Materials: With Applications in Excel [Taylor & Francis e-raamat]

(Bradley University, Peoria, Illinois, USA), (Bradley University, Peoria, Illinois, USA)
  • Formaat: 707 pages, 5 Tables, color; 1057 Illustrations, color
  • Ilmumisaeg: 21-Jun-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781315374314
  • Taylor & Francis e-raamat
  • Hind: 184,65 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 263,78 €
  • Säästad 30%
  • Formaat: 707 pages, 5 Tables, color; 1057 Illustrations, color
  • Ilmumisaeg: 21-Jun-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781315374314
Muvdi and Elhouar offer a comprehensive guide to the fundamentals of the mechanics of materials, using numerous examples and review problems to convey the material. The authors cover axial loads, torsional loads, bending loads and stresses, deflections under symmetric loading, analysis of stress, analysis of strain, columns, and many other related subjects over the course of the book’s ten chapters. The book also includes excel spreadsheet applications for much of the material it covers. Bichara B. Muvdi is a retired faculty member of Bradley University in Illinois. Souhail Elhouar is a faculty member of Bradley University. Annotation ©2016 Ringgold, Inc., Portland, OR (protoview.com)

Based on the authors’ extensive experience teaching undergraduate and graduate courses, this textbook covers mechanics of materials in a way that is simple enough for beginners yet comprehensive and practical enough for professionals. In addition to discussing typical items needed in undergraduate courses, the text covers areas that make this book useful to practicing engineers. It provides a companion website with a collection of editable MS Excel spreadsheets representing all the examples presented in the textbook, multimedia simulations of concepts for ease of understanding, PowerPoint lecture slides, and a solutions manual.

Preface xiii
Authors xv
Chapter 1 Axial Loads
1(68)
1.1 Introduction
1(1)
1.2 Internal Axial Force
1(7)
1.2.1 Concentrated Force
1(2)
1.2.2 Sign Convention
3(1)
1.2.3 Distributed Forces
4(4)
1.3 Normal and Shearing Stresses
8(12)
1.3.1 Normal Stress
8(2)
1.3.2 Stress Element
10(1)
1.3.3 Shearing Stress
10(1)
1.3.4 Stresses on Inclined Planes
11(2)
1.3.5 Units
13(1)
1.3.6 Sign Convention
13(7)
1.4 Normal Strain and Stress-Strain Diagrams
20(14)
1.4.1 Normal Strain
20(1)
1.4.2 Units
21(1)
1.4.3 Sign Convention
21(1)
1.4.4 Mechanical Properties
21(8)
1.4.5 Design Considerations
29(5)
1.5 Load-Deformation Relations
34(9)
1.6 Statically Indeterminate Members
43(13)
1.6.1 Temperature Effects
47(9)
*1.7 Stress Concentration
56(4)
*1.8 Impact Loading
60(9)
Review Problems
65(4)
Chapter 2 Torsional Loads
69(80)
2.1 Introduction
69(1)
2.2 Internal Torque
69(9)
2.2.1 Concentrated Torque
69(1)
2.2.2 Sign Convention
70(1)
2.2.3 Distributed Torques
71(7)
2.3 Stresses and Deformations in Circular Shafts
78(18)
2.3.1 Shearing Strain
78(1)
2.3.2 Sign Convention
79(1)
2.3.3 Shearing Stress and Shearing Deformation
79(3)
2.3.4 Material Properties in Shear
82(1)
2.3.5 Stress Element
83(1)
2.3.6 Stresses on Inclined Planes
83(13)
2.4 Statically Indeterminate Shafts
96(7)
2.5 Design of Power-Transmission Shafts
103(1)
2.6 Stresses under Combined Loads
104(7)
2.6.1 Hooke's Law in Two Dimensions
106(5)
*2.7 Stress Concentration
111(2)
*2.8 Impact Loading
113(7)
*2.9 Shafts of Noncircular Cross Sections
120(19)
2.9.1 Analytical Solutions
120(3)
2.9.2 Experimental Solutions
123(4)
2.9.3 Application to Torsion of a Long, Thin Rectangle
127(2)
2.9.4 Special Cases
129(1)
2.9.4.1 Narrow Circular Section with Thin Slit
129(1)
2.9.4.2 Sections Composed of Narrow Rectangles
129(2)
2.9.5 Application to Torsion of Thin-Walled Tubes
131(8)
*2.10 Elastoplastic Behavior
139(10)
Review Problems
145(4)
Chapter 3 Bending Loads: Stresses
149(62)
3.1 Introduction
149(1)
3.2 Internal Shear and Moment
150(10)
3.2.1 Shear and Moment at Specified Positions
150(1)
3.2.2 Sign Convention
151(2)
3.2.3 Shear and Moment Functions: Shear and Moment Diagrams
153(7)
3.3 Load, Shear, and Moment Relationships
160(6)
3.4 Bending Stresses under Symmetric Loading
166(12)
3.5 Shearing Stresses under Symmetric Loading
178(14)
3.5.1 Longitudinal Surfaces Normal to Loads
178(2)
3.5.2 Shear Flow
180(12)
3.6 Stresses under Combined Loads
192(7)
3.7 Allowable-Stress Design
199(3)
*3.8 Stress Concentration
202(9)
Review Problems
207(4)
*Chapter 4 Bending Loads: Additional Stress Topics
211(68)
4.1 Introduction
211(1)
4.2 Beams of Two or Three Materials Loaded Symmetrically
211(12)
4.2.1 General Principles
211(4)
4.2.2 Application to Reinforced Concrete
215(8)
4.3 Bending Stresses under Unsymmetric Loading
223(11)
4.3.1 Arbitrary Centroidal Axes
223(2)
4.3.2 Principal Centroidal Axes
225(9)
4.4 Thin-Walled Open Sections: Shear Center
234(13)
4.4.1 Symmetric Bending
234(6)
4.4.2 Unsymmetric Bending
240(7)
4.5 Curved Beams
247(7)
4.6 Elastoplastic Behavior: Plastic Hinge
254(11)
4.6.1 Shape Factor
254(2)
4.6.2 Plastic Hinge
256(9)
4.7 Fatigue
265(14)
Review Problems
275(4)
Chapter 5 Bending Loads: Deflections under Symmetric Loading
279(64)
5.1 Introduction
279(1)
5.2 Moment-Curvature Relationship
280(2)
5.3 Deflection: Two Successive Integrations
282(13)
5.4 Derivatives of the Deflection Function
295(4)
5.5 Deflection: Superposition
299(4)
5.6 Deflection: Area-Moment
303(16)
5.6.1 Moment Diagrams by Cantilever Parts
307(12)
5.7 Statically Indeterminate Beams: Two Successive Integrations
319(8)
5.8 Statically Indeterminate Beams: Superposition
327(6)
5.9 Statically Indeterminate Beams: Area-Moment
333(10)
Review Problems
338(5)
*Chapter 6 Bending Loads: Additional Deflection Topics
343(46)
6.1 Introduction
343(1)
6.2 Deflection: Singularity Functions
343(10)
6.3 Deflection: Castigliano's Second Theorem
353(8)
6.4 Deflection: Unsymmetric Bending Loads
361(5)
6.5 Statically Indeterminate Beams: Singularity Functions
366(7)
6.6 Statically Indeterminate Beams: Castigliano's Second Theorem
373(7)
6.7 Impact Loading
380(9)
Review Problems
386(3)
Chapter 7 Analysis of Stress
389(86)
7.1 Introduction
389(1)
7.2 Stress at a Point
389(1)
7.3 Components of Stress
390(2)
7.4 Plane-Stress Transformation Equations
392(18)
7.4.1 Stresses on Inclined Planes
392(4)
7.4.2 Principal Stresses
396(2)
7.4.3 Maximum In-Plane Shearing Stress
398(12)
7.5 Mohr's Circle for Plane Stress
410(17)
7.5.1 Construction of Mohr's Circle
410(2)
7.5.2 Principal Stresses and Maximum In-Plane Shearing Stress
412(7)
7.5.3 Stresses on Inclined Planes
419(8)
*7.6 Three-Dimensional Stress Systems
427(14)
7.6.1 Mohr's Circle for Triaxial Stress Systems: Absolute Maximum Shearing Stress
432(9)
7.7 Thin-Walled Pressure Vessels
441(6)
7.7.1 Cylindrical Vessels
441(2)
7.7.2 Spherical Vessels
443(4)
*7.8 Thick-Walled Cylindrical Pressure Vessels
447(10)
7.8.1 Stresses
447(3)
7.8.2 Deformations
450(1)
7.8.3 Special Cases
450(1)
7.8.3.1 Internal Pressure Only
451(1)
7.8.3.2 External Pressure Only
451(2)
7.8.3.3 Shrink-Fitting Operations
453(1)
7.8.3.4 Internal Pressure on Thin-Walled Cylinders
454(3)
*7.9 Theories of Failure
457(18)
7.9.1 Brittle Material
457(1)
7.9.1.1 Maximum Principal Stress Theory
457(1)
7.9.1.2 Mohr's Theory
458(2)
7.9.2 Ductile Materials
460(1)
7.9.2.1 Maximum Shearing Stress Theory
460(1)
7.9.2.2 The Energy of Distortion Theory
460(11)
Review Problems
471(4)
Chapter 8 Analysis of Strain
475(46)
8.1 Introduction
475(1)
8.2 Strain at a Point: Components of Strain
475(2)
8.2.1 Units and Sign Conventions
477(1)
8.3 Plane-Strain Transformation Equations
477(11)
8.3.1 Principal Strains
481(1)
8.3.2 Maximum In-Plane Shearing Strain
482(6)
8.4 Mohr's Circle for Plane Strain
488(11)
8.4.1 Principal Strains and Maximum In-Plane Shearing Strain
489(1)
8.4.2 Inclined Axes
490(5)
8.4.3 Development of the Relation G = E/2(1 + μ)
495(4)
*8.5 Three-Dimensional Hooke's Law
499(7)
8.5.1 Summary of Hooke's Laws in One and Two Dimensions
499(1)
8.5.2 Hooke's Law in Three Dimensions
499(3)
8.5.3 Volume Change: Bulk Modulus of Elasticity
502(1)
8.5.4 Strain Energy: Energy of Distortion
503(3)
*8.6 Mohr's Circle for Three-Dimensional Strain Systems
506(4)
*8.7 Strain Measurements: Strain Rosettes
510(11)
Review Problems
517(4)
Chapter 9 Columns
521(72)
9.1 Introduction
521(1)
9.2 Stability of Equilibrium
521(8)
9.2.1 Theoretical Background
521(2)
9.2.2 Column Models
523(6)
9.3 Euler's Ideal-Column Theory
529(12)
9.4 Effect of End Conditions
541(7)
9.4.1 Critical Load for Column Fixed at One End and Free at the Other
541(2)
9.4.2 Effective Length
543(5)
9.5 Secant Formula
548(13)
9.5.1 Eccentrically Loaded Pin-Ended Column
548(1)
9.5.2 Maximum Deflection
549(1)
9.5.3 Secant Formula
550(2)
9.5.4 Initially Bent Pin-Ended Columns
552(9)
9.6 Design of Centrically Loaded Columns
561(17)
9.6.1 Inelastic Column Buckling
561(1)
9.6.2 Empirical Equations
562(1)
9.6.3 Structural Steel
563(1)
9.6.3.1 Short and Intermediate Columns
563(1)
9.6.3.2 Long Columns
563(15)
9.7 Design of Eccentrically Loaded Columns
578(15)
9.7.1 Allowable-Stress Method
578(1)
9.7.2 Interaction Method
579(10)
Review Problems
589(4)
Chapter 10 Excel Spreadsheet Applications
593(40)
10.1 Introduction
593(1)
10.2 Spreadsheet Applications Concepts and Techniques
593(14)
10.2.1 Using Styles
594(1)
10.2.2 Protecting Formula Cells
594(1)
10.2.3 Data Validation
594(3)
10.2.4 Using Excel Functions
597(5)
10.2.5 Automatic Real-Time Sorting
602(2)
10.2.6 Defining New Functions
604(1)
10.2.7 Conditional Formatting
605(1)
10.2.8 Using Controls
605(2)
10.3 Example 1: Drawing Shear and Moment Diagrams
607(7)
10.4 Example 2: Drawing Mohr's Circle
614(7)
10.4.1 Plotting Mohr's Circle
616(2)
10.4.2 State of Stress on the x' Plane
618(1)
10.4.3 Representation of the State of Stress on the x Plane, the y Plane, and the x' Plane on Mohr's Circle
619(2)
10.5 Example 3: Principal Stresses in Three-Dimensional Stress Elements
621(5)
10.6 Example 4: Computation of Combined Stresses
626(5)
10.7 Excel Spreadsheet Application Projects
631(2)
10.7.1 Project 10.1: Cross-Sectional Properties of a General Shape
631(1)
10.7.2 Project 10.2: Stresses in Statically Indeterminate Systems
632(1)
10.7.3 Project 10.3: Inelastic Analysis
632(1)
Answers to Even-Numbered Problems 633(14)
Appendix A SI Units 647(2)
Appendix B Selected References 649(2)
Appendix C Properties of Plane Areas 651(26)
Appendix D Typical Physical and Mechanical Properties of Selected Materials (U.S. Units and SI Units) 677(2)
Appendix E 679(14)
Appendix F Design Properties for Selected Structural Wood Sections (U.S. Units and SI Units) 693(2)
Appendix G Beam Slopes and Deflections for Selected Cases 695(2)
Appendix H Two-Dimensional Supports and Connections 697(4)
Index 701
Bichara B. Muvdi is a professor emeritus of the Department of Civil Engineering and Construction at Bradley University, Peoria, Illinois, USA. He received his B.M.E. and M.M.E. from Syracuse University, New York, USA, and his Ph.D. from the University of Illinois, Urbana-Champaign, Illinois, USA.

Souhail Elhouar is a professor and the chairman of the Department of Civil Engineering and Construction at Bradley University, Peoria, Illinois, USA. He received his B.Sc. from the National Engineering School of Tunis, University of Tunis - El Manar, Tunis, Tunisia, and his M.Sc. and Ph.D. from the University of Oklahoma, Norman, Oklahoma, USA.