Muutke küpsiste eelistusi

E-raamat: Medical Coatings and Deposition Technologies [Wiley Online]

Edited by , Edited by
  • Formaat: 800 pages
  • Ilmumisaeg: 19-Jul-2016
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1119308712
  • ISBN-13: 9781119308713
  • Wiley Online
  • Hind: 263,27 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 800 pages
  • Ilmumisaeg: 19-Jul-2016
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1119308712
  • ISBN-13: 9781119308713

Medical Coatings and Deposition Technologies is an important new addition to the libraries of medical device designers and manufacturers. Coatings enable the properties of the surface of a device to be controlled independently from the underlying bulk properties; they are often critical to the performance of the device and their use is rapidly growing. This book provides an introduction to many of the most important types of coatings used on modern medical devices as well as descriptions of the techniques by which they are applied and methods for testing their efficacy.  Developers of new medical devices and those responsible for producing them will find it an important reference when deciding if a particular functionality can be provided by a coating and what limitations may apply in a given application. Written as a practical guide and containing many specific coating examples and a large number of references for further reading, the book will also be useful to students in materials science & engineering with an interest in medical devices.

Chapters on antimicrobial coatings as well as coatings for biocompatibility, drug delivery, radiopacity and hardness are supported by chapters describing key liquid coating processes, plasma-based processes and chemical vapor deposition. Many types of coatings can be applied by more than one technique and the reader will learn the tradeoffs given the relevant design, manufacturing and economic constraints. The chapter on regulatory considerations provides important perspectives regarding the marketing of these coatings and medical devices.

Preface xxi
Part 1 Introduction 1(26)
1 Historical Perspectives on Biomedical Coatings in Medical Devices
3(24)
M. Hendriks
P.T. Cahalan
1.1 Introduction
4(1)
1.2 Improving Physical Properties of Biomaterials: Hydrophilic, Lubricious Coatings
5(2)
1.3 Modulating Host-Biomaterial Interactions: Biologically Active Coatings
7(8)
1.3.1 Heparin Coatings
7(2)
1.3.2 Antimicrobial Coatings
9(1)
1.3.2.1 Antimicrobial-Releasing Materials
11(1)
1.3.2.2 Nonadhesive Surfaces
12(1)
1.3.2.3 Promoting Tissue Integration
12(2)
1.3.3 Drug-Eluting Coatings
14(1)
1.4 Bioinert Coatings Redressed? Nonfouling Coatings
15(1)
1.5 Future Biomedical Coatings
16(2)
References
18(9)
Part 2 Coating Applications 27(206)
2 Antimicrobial Coatings and Other Surface Modifications for Infection Prevention
29(46)
Marc W. Mittelman
Nimisha Mukherjee
2.1 Introduction
29(6)
2.2 Genesis of Device-Related Infections
35(3)
2.3 Antimicrobial Coatings
38(11)
2.3.1 Antibiotics
40(1)
2.3.2 Non-Antibiotic Antimicrobial Compounds
41(1)
2.3.2.1 Organic Compounds
41(1)
2.3.2.2 Silver and Other Metals
48(1)
2.4 Non-Eluting Antimicrobial Surfaces
49(4)
2.4.1 Pendant Chemistries
49(1)
2.4.1.1 Zwitterionic Surfaces
51(1)
2.4.1.2 Topographical Modifications
52(1)
2.5 Coating and Surface Modification Technologies
53(4)
2.5.1 Passive-Release Technologies
53(1)
2.5.1.1 Diffusion-Based Antimicrobial Coatings
53(1)
2.5.1.2 Solvent Imbibing of Antimicrobials
54(1)
2.5.2 Sputter Coating Systems
55(1)
2.5.3 Covalent Surface Modification
55(1)
2.5.4 Other Technologies
56(1)
2.6 Regulatory Considerations
57(1)
2.7 Future Challenges
58(3)
2.7.1 Antimicrobial Resistance
58(3)
2.7.2 Biocompatibility
61(1)
References
61(14)
3 Drug Delivery Coatings for Coronary Stents
75(40)
Shrirang V. Ranade
Kishore Udipi
3.1 Introduction
75(6)
3.1.1 Coronary Artery Disease: Treatment Options and Issues
76(3)
3.1.2 Bare-Metal Stents
79(1)
3.1.3 Drug-Eluting Stents
80(1)
3.2 Polymer Coatings for DES
81(5)
3.2.1 Requirements for Coronary Stent Coatings
81(1)
3.2.2 Physical and Chemical Properties
82(1)
3.2.2.1 Stability
83(1)
3.2.2.2 Sterilization
83(1)
3.2.2.3 Compatibility with the Drug and Drug Elution
83(1)
3.2.3 Biological Properties
84(1)
3.2.3.1 Biocompatibility with Vascular Tissue
84(1)
3.2.4 Coating Optimization
85(1)
3.3 Biostable (Non-Bioabsorbable) Polymers
86(13)
3.3.1 Poly(Ethylene-Co-Vinyl Acetate)/Poly(n-Butylmethacrylate)/Parylene C
87(2)
3.3.2 Poly(Styrene-block-Isobutylene-block-Styrene) (SIBS)
89(3)
3.3.3 Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/ Poly(n-Butyl Methacrylate)
92(2)
3.3.4 Phosphorylcholine-Based Polymer Coating System (PC)
94(2)
3.3.5 BIOLINX® Polymer Coating
96(3)
3.4 Bioabsorbable Polymers
99(4)
3.5 Concluding Remarks
103(1)
References
104(11)
4 Coatings for Radiopacity
115(16)
Scott Schewe
David A. Glocker
4.1 Principles of Radiography
115(1)
4.2 Use of Radiopaque Materials in Medical Devices
116(1)
4.3 Radiopaque Fillers
117(1)
4.3.1 Purpose of Radiopaque Fillers in Polymers
117(1)
4.4 Types of Radiopaque Fillers
117(4)
4.4.1 Barium Compounds
117(1)
4.4.2 Bismuth Compounds
118(1)
4.4.3 Metals
119(2)
4.4.4 Material Modifications to Enhance Radiopacity
121(1)
4.5 Other Radiographic Materials and Coating Systems
121(1)
4.5.1 Metal-Loaded Polymer Suspensions
121(1)
4.6 Radiopaque Coatings by Physical Vapor Deposition
122(2)
4.7 Challenges in Producing Radiopaque Coatings Using PVD
124(1)
4.8 Gold Radiopaque Coatings
125(1)
4.9 Tantalum Radiopaque Coatings
126(3)
4.10 Summary
129(1)
References
130(1)
5 Biocompatibility and Medical Device Coatings
131(50)
Joseph McGonigle
Thomas J. Webster
Garima Bhardwaj
5.1 Introduction
131(3)
5.2 Challenges with Medical Devices
134(14)
5.2.1 Toxicity
134(3)
5.2.2 Inflammation
137(2)
5.2.3 Blood Compatibility
139(3)
5.2.4 Wound Healing
142(2)
5.2.5 Encapsulation
144(1)
5.2.6 Tissue Integration
145(1)
5.2.7 Vascularization
145(1)
5.2.8 Infection
146(2)
5.3 Examples of Products Coated to Improve Biocompatibility
148(9)
5.3.1 Stents
148(2)
5.3.2 Surgical Mesh Materials
150(1)
5.3.3 Orthopedic Implants
151(2)
5.3.4 Sensors
153(1)
5.3.5 Pacemaker Leads
154(1)
5.3.6 Neurological Devices
154(2)
5.3.7 Catheters/Endotracheal Tubes
156(1)
5.3.8 Ocular
156(1)
5.4 Types of Biocompatible Coatings
157(13)
5.4.1 Polymers and Surface Modification
157(1)
5.4.2 Surface Preparation and Polymer Deposition
157(3)
5.4.3 Covalent Bonding
160(1)
5.4.4 Biocompatible Biomaterials
161(1)
5.4.5 Hydrophilic and Nonfouling Polymers
161(2)
5.4.6 Small Molecule Pharmaceuticals
163(1)
5.4.7 Extracellular Matrix Proteins and Peptides
163(2)
5.4.8 Heparin and Polysaccharides
165(1)
5.4.9 Antibody and Other Biomolecule Coatings
166(1)
5.4.10 Orthopedics/Calcium Phosphate/BMP
166(2)
5.4.11 Porosity
168(1)
5.4.12 Surface Roughness
169(1)
5.5 Commercialization
170(2)
5.5.1 Cost Challenges
170(1)
5.5.2 Manufacturing Challenges
171(1)
5.5.3 Animal-Derived Materials
171(1)
5.6 Summary
172(1)
References
172(9)
6 Tribological Coatings for Biomedical Devices
181(52)
Peter Martin
6.1 Introduction
181(6)
6.2 Hard Thin Film Coatings for Implants
187(7)
6.2.1 Titanium- and Chromium-Based Thin Film Materials
188(6)
6.3 Binary Carbon-Based Thin Film Materials: Diamond, Hard Carbon and Amorphous Carbon
194(6)
6.3.1 Tribological Properties
194(6)
6.4 Progress of DLC, ta-C and a-C:H Films for Hip and Knee Implants
200(8)
6.4.1 Diamond-like Carbon
200(5)
6.4.2 Biocompatibility and Thrombus Formation
205(1)
6.4.3 Aluminum Oxide Thin Films
206(2)
6.5 Wear-Resistant Coatings for Stents and Catheters
208(2)
6.6 Wear-Resistant Coatings for Angioplasty Devices
210(1)
6.7 Scalpel Blades and Surgical Instruments
210(1)
6.8 Multifunctional, Nanostructured, Nanolaminate, and Nanocomposite Tribological Materials
210(12)
References
222(11)
Part 3 Coating and Surface Modification Methods 233(348)
7 Dip Coating
235(12)
Donald M. Copenhagen
7.1 Description and Basic Steps
235(1)
7.2 Equipment and Coating Application
236(1)
7.2.1 Hand Dipping
236(1)
7.2.2 Mechanical Dipping
236(1)
7.3 Coating Solution Containers
237(1)
7.4 Coating Parameters and Controls
238(2)
7.5 Role of Solution Viscosity
240(1)
7.5.1 Viscosity and Withdrawal Velocity
240(1)
7.5.2 Molecular Weight of Polymers
240(1)
7.5.3 Viscosity as a Function of Solids Content
241(1)
7.6 Coating Problems
241(3)
7.6.1 Partial Coating
241(1)
7.6.2 Vibration
241(1)
7.6.3 Humidity
242(1)
7.6.4 Run Back
242(1)
7.6.5 Orange Peel
242(1)
7.6.6 Chatter
242(1)
7.6.7 Craters
243(1)
7.6.8 Bubbles
243(1)
7.6.9 Poor Adhesion
243(1)
7.7 Process Considerations
244(3)
8 Inkjet Technology and Its Application in Biomedical Coating
247(62)
Bogdan V. Antohe
David B. Wallace
Patrick W. Cooley
8.1 Introduction
247(1)
8.2 Inkjet Background
248(12)
8.2.1 Continuous Inkjet (CIJ)
248(2)
8.2.2 Drop-on-Demand (DOD)
250(1)
8.2.2.1 General Discussion
250(1)
8.2.2.2 Less Common Actuation Methods
250(1)
8.2.2.3 Thermal Inkjet
252(1)
8.2.2.4 Piezoelectric Inkjet
254(4)
8.2.3 Comparison of CIJ and DOD
258(2)
8.2.4 Drop Formation
260(1)
8.3 Equipment Used
260(8)
8.3.1 Dispenser/Printhead
261(2)
8.3.2 Motion
263(1)
8.3.3 Auxiliary Equipment
264(1)
8.3.3.1 Drive Electronics
264(1)
8.3.3.2 Pressure Control
264(1)
8.3.3.3 Temperature Control
265(1)
8.3.3.4 Environmental Control
265(1)
8.3.3.5 Optics
266(1)
8.3.3.6 Maintenance
266(1)
8.3.3.7 Other Auxiliary Components
267(1)
8.3.4 Software
267(1)
8.3.5 Printing Platform Manufacturers
268(1)
8.4 Capabilities
268(12)
8.4.1 Surface Activation and Passivation
268(1)
8.4.1.1 Microarrays
268(1)
8.4.1.2 Tissue MALDI - Application of Matrix Solutions
268(1)
8.4.1.3 Nerve Conduits - Fabrication and Coating to Create a Nerve Growth Factor (NGF) Gradient
270(1)
8.4.1.4 Coating for Activation
271(5)
8.4.2 Drug Release/Delivery
276(4)
8.5 Limitations and Ways around Them
280(13)
8.5.1 Requirements of Dispensed Materials
280(1)
8.5.1.1 Viscosity
280(1)
8.5.1.2 Surface Tension
281(1)
8.5.1.3 Volatility/Boiling Point
281(1)
8.5.2 Operational Limitations
281(1)
8.5.3 Liquid - Substrate Interaction
282(1)
8.5.3.1 Single or Multiple Drops Placed at one Location
282(1)
8.5.3.2 Feature Generation (Lines or Area Coverage) by Drop Distribution
284(3)
8.5.4 Failure Modes
287(1)
8.5.4.1 Clogging
288(1)
8.5.4.2 Drop Placement Errors
288(2)
8.5.5 Minimizing Operational Limits and Failure
290(1)
8.5.5.1 Printhead
290(1)
8.5.5.2 Solution Formulation
290(1)
8.5.5.3 Substrate Treatment and Containment Features
292(1)
8.5.5.4 Maintenance
292(1)
8.5.5.5 Other Elements of the Printing Process
293(1)
8.6 Manufacturing Advantages and Future Directions
293(6)
8.6.1 Advantages
293(1)
8.6.2 Potential Applications
294(1)
8.6.2.1 Tissue Engineering
295(1)
8.6.2.2 Scaffolds
295(1)
8.6.2.3 Skin Regeneration
295(1)
8.6.2.4 Transdermal Drug Delivery
297(1)
8.6.2.5 Visual Prosthesis
298(1)
8.6.2.6 Packaging - Adhesives
298(1)
8.7 Conclusions
299(1)
References
300(9)
9 Direct Capillary Printing in Medical Device Manufacture
309(64)
William J. Grande
9.1 Introduction
309(11)
9.1.1 Origins and Brief History
310(2)
9.1.2 Competitive Technologies
312(1)
9.1.2.1 Direct Writing
312(1)
9.1.2.2 Competitors Outside of Direct Writing
313(1)
9.1.2.3 Example of the Evolution of Manufacturing Techniques over Time
314(2)
9.1.3 Strategic Considerations for Medical Device Manufacture
316(3)
9.1.4 Summary
319(1)
9.2 Fundamental Elements of Direct Capillary Printing
320(17)
9.2.1 Ink Systems
321(1)
9.2.1.1 Single-Phase Inks
322(1)
9.2.1.2 Multi-Phase Inks
323(1)
9.2.1.3 Curing Temperature
323(4)
9.2.2 Applying Force to the Ink
327(1)
9.2.3 The Fluidic Channel
328(1)
9.2.4 The Pen Tip
328(3)
9.2.5 The Motion Control System
331(1)
9.2.6 The Ink-Substrate-Printhead System
331(2)
9.2.7 Special Considerations for Medical Devices
333(1)
9.2.7.1 Adhesion and Cohesion Testing
333(1)
9.2.7.2 Biocompatibility
333(1)
9.2.7.3 Electrochemical Stability
335(1)
9.2.7.4 Conflict Minerals
335(2)
9.3 Practical Operational Considerations
337(12)
9.3.1 Starting, Stopping, and Idling
337(1)
9.3.2 Substrate Effects
338(3)
9.3.3 Ink Effects
341(1)
9.3.4 Motion Effects
342(1)
9.3.5 Lateral Misalignment, Eccentricity, and Substrate Shape Errors
343(2)
9.3.6 Pattern and Tool Path Effects
345(3)
9.3.7 Multi-Level Pattern Effects
348(1)
9.3.8 Process Integration
348(1)
9.4 Manufacturing Considerations
349(3)
9.4.1 Low Volume Manufacturing
350(1)
9.4.2 High Volume Manufacturing
351(1)
9.5 Medical Device Examples
352(15)
9.5.1 Tube and Catheter Devices
352(1)
9.5.1.1 Instrumented Endotracheal Tube for Cardiac Output Monitoring
352(1)
9.5.1.2 LED-Instrumented Medical Devices for Photodynamic Therapy
355(2)
9.5.2 Balloon-Based Devices
357(1)
9.5.2.1 Improved Radiopaque Markings for a Bone Fracture Repair Catheter
357(1)
9.5.2.2 Ablation Electrodes for Denervation
361(2)
9.5.3 Ceramic- and Metal-Based Devices
363(1)
9.5.3.1 Bipolar Hemostasis Ablation Probe
364(1)
9.5.3.2 Immersion Heater for Ablative Therapies
365(1)
9.5.4 3D Printing
366(1)
9.5.4.1 Flat Flexible Electrode Array
366(1)
9.5.4.2 Stents
367(1)
9.6 Conclusions
367(2)
Acknowledgments
369(1)
References
369(4)
10 Sol-Gel Coating Methods in Biomedical Systems
373(30)
Bakul C. Dave
10.1 Introduction
374(3)
10.2 Overview of Sol-Gel Coatings in Biomedical Systems
377(4)
10.2.1 Tailored Surfaces
379(1)
10.2.2 Surface Passivation
379(1)
10.2.3 Biocompatibility
380(1)
10.2.4 Release and Growth Media
381(1)
10.3 The Sol-Gel Process
381(4)
10.3.1 Chemistry and Processing
382(3)
10.4 Coating Methods and Processes
385(5)
10.4.1 Dip Coating
386(1)
10.4.2 Spin Coating
387(1)
10.4.3 Spray Coating
388(1)
10.4.4 Self-Assembly
388(1)
10.4.5 Other Methods
389(1)
10.5 Factors Influencing Coatings Characteristics/Performance
390(4)
10.5.1 Processing Conditions
391(1)
10.5.2 Native Composition/Excipients
392(1)
10.5.3 Porosity
393(1)
10.5.4 Deposition Method
393(1)
10.5.5 Uniformity and Homogeneity
394(1)
10.6 Summary and Concluding Remarks
394(3)
References
397(6)
11 Chemical Vapor Deposition
403(54)
Kenneth K.S. Lau
11.1 Introduction
403(2)
11.2 Process Description
405(5)
11.2.1 Precursor Selection
406(1)
11.2.2 Vapor Delivery
407(1)
11.2.3 Reactor Configuration
407(1)
11.2.4 Precursor Activation
408(1)
11.2.5 Pressure Management
409(1)
11.2.6 Exhaust Handling
410(1)
11.2.7 Other Peripherals
410(1)
11.3 Process Mechanism
410(4)
11.3.1 Mass Transport
411(1)
11.3.2 Reaction Kinetics
412(1)
11.3.3 Thermodynamics
412(1)
11.3.4 Rate-Limiting Behavior
413(1)
11.4 Technology Advances
414(28)
11.4.1 Thermal CVD of Graphene
414(7)
11.4.2 HWCVD of Nanodiamond
421(5)
11.4.3 ALD of Oxides and Nitrides
426(7)
11.4.4 iCVD of Polymers
433(9)
11.5 Future Outlook
442(1)
References
443(14)
12 Introduction to Plasmas Used for Coating Processes
457(16)
David A. Glocker
12.1 Introduction
457(2)
12.2 DC Glow Discharges
459(4)
12.3 RF Glow Discharges
463(1)
12.4 RF Diode Glow Discharges
464(2)
12.5 Ionization in RF Diode Glow Discharges
466(1)
12.6 Inductively Coupled RF Discharges
466(2)
12.7 Mid-Frequency AC Discharges
468(1)
12.8 Pulsed DC Discharges
469(1)
12.9 Comparison of Plasma Properties
470(1)
12.10 Plasma Species
470(1)
12.11 Summary
471(1)
References
472(1)
13 Ion Implantation: Tribological Applications
473(22)
Peter Martin
13.1 Introduction
473(1)
13.2 Applications
474(13)
13.2.1 Nitrogen Ion Implantation
474(2)
13.2.2 Implantation of C+ Ions
476(3)
13.2.3 Titanium Alloys
479(1)
13.2.4 Tribological Testing
479(8)
13.3 Nanocrystalline Diamond
487(5)
13.3.1 Ti Ion Implanting into DLC
491(1)
Reference
492(3)
14 Plasma-Enhanced Chemical Vapor Deposition
495(36)
Kenneth K.S. Lau
14.1 Introduction
495(2)
14.2 Process Description
497(4)
14.2.1 Plasma Configuration
498(1)
14.2.2 Plasma Chemistry
499(1)
14.2.3 Plasma Field
500(1)
14.2.4 Plasma Diagnostics
501(1)
14.3 Plasma Effects on Materials Deposition
501(19)
14.3.1 Plasma Configuration: Titanium Dioxide
502(5)
14.3.2 Plasma Chemistry: Ultrananocrystalline Diamond
507(6)
14.3.3 Plasma Electric Field: Carbon Nanofibers
513(7)
14.4 Future Outlook
520(1)
References
521(10)
15 Sputter Deposition and Sputtered Coatings for Biomedical Applications
531(22)
David A. Glocker
15.1 Introduction
531(2)
15.2 Overview of Sputter Coating
533(3)
15.3 Characteristics of Sputtered Atoms
536(3)
15.4 Sputtering Cathodes
539(2)
15.5 Relationship between Process Parameters and Coating Properties
541(3)
15.6 Biased Sputtering
544(1)
15.7 Adhesion and Stress in Sputtered Coatings
545(1)
15.8 Sputtering Electrically Insulating Materials
546(3)
15.9 Recent Developments
549(1)
15.10 Summary and Conclusions
549(1)
References
550(3)
16 Cathodic Arc Vapor Deposition
553(28)
Gary Vergason
16.1 Introduction
553(3)
16.2 Medical Uses of Cathodic Arc Titanium Nitride Coatings
556(1)
16.3 Brief History and Commercial Advancement of Cathodic Arcs
557(2)
16.4 Review of Arc Devices
559(2)
16.5 Description of PVD Coating Manufacturing
561(6)
16.5.1 Order Entry
562(1)
16.5.2 Cleaning
563(1)
16.5.3 Coating Fixturing and Masking
563(1)
16.5.4 PVD Coating
563(1)
16.5.4.1 Substrate Loading
564(1)
16.5.4.2 Pump Down
565(1)
16.5.4.3 Substrate Heating and Cleaning
565(1)
16.5.4.4 Coating
565(1)
16.5.4.5 Cooldown
566(1)
16.5.4.6 Unloading
566(1)
16.6 Macroparticle Generation and Mitigation
567(1)
16.7 Considerations for Coating Success
568(8)
16.7.1 Surface Finish and Contaminants
569(1)
16.7.1.1 Heat Treating
570(1)
16.7.1.2 Abrasive and Chemical Cleaning
570(1)
16.7.1.3 Unbalanced Final Grinding
570(1)
16.7.1.4 Low Temperature Materials
571(1)
16.7.1.5 Press Fit Components
571(1)
16.7.1.6 Polishing Carriers
571(1)
16.7.2 Cleaning for PVD
572(1)
16.7.2.1 Ultrasonic Cleaning
572(1)
16.7.2.2 Plasma Cleaning
572(1)
16.7.3 PVD Masking and Fixturing
573(1)
16.7.4 Inspection and Certification
573(1)
16.7.4.1 Coating Thickness
574(1)
16.7.4.2 Coating Adhesion
575(1)
16.7.4.3 Post Cleaning and Shipping
576(1)
16.8 Materials Used in Biomedical PVD Coatings
576(1)
References
576(5)
Part 4 Functional Tests 581(142)
17 Antimicrobial Coatings Efficacy Evaluation
583(22)
Nimisha Mukherjee
Marc W. Mittelman
17.1 Introduction
583(1)
17.2 In-Vitro Methods
584(6)
17.2.1 Biofilm Development
584(2)
17.2.2 Quantitative Recovery of Cells from Surfaces
586(1)
17.2.3 Zone-of-Inhibition (ZOI) Assays
587(1)
17.2.4 Antimicrobial Surface Activity (Agar Overlay Technique)
587(1)
17.2.5 Direct Observation
588(1)
17.2.5.1 Epifluorescence Microscopy
588(1)
17.2.5.2 Scanning and Transmission Electron Microscopy
588(1)
17.2.5.3 Atomic Force Microscopy
589(1)
17.2.6 Characterization of Bacterial and Fungal Cells
590(1)
17.3 In-Vivo (Animal) Methods
590(1)
17.4 Equipment and Laboratory Resources
590(1)
17.5 Human Clinical Trial Considerations
590(1)
17.6 Regulatory Considerations
590(6)
17.6.1 U.S. FDA
590(5)
17.6.2 EU
595(1)
17.6.3 Japan, Australia
595(1)
References
596(9)
18 Mechanical Characterization of Biomaterials: Functional Tests for Hardness
605(26)
Vincent Jardret
18.1 Introduction
605(2)
18.2 Basic Principles of Hardness and Indentation Testing
607(4)
18.2.1 Classic Hardness Scales
607(1)
18.2.1.1 Brinell Hardness Number
607(1)
18.2.1.2 Meyer Hardness
610(1)
18.2.1.3 Vickers Hardness
610(1)
18.2.1.4 Knoop Hardness
610(1)
18.2.1.5 Rockwell Hardness Scale
611(1)
18.3 Depth-Sensing Indentation Testing
611(6)
18.3.1 Determination of the Contact Depth
612(3)
18.3.2 Determination of the Contact Area
615(1)
18.3.3 Determination of the Nanoindentation Hardness
616(1)
18.3.4 Determination of the Reduced and Young's Elastic Modulus
617(1)
18.4 Dynamic Indentation Testing: A More Advanced Hardness Measurement Technique for More Complex Material Behavior
617(9)
18.4.1 Continuous Stiffness Measurement Technique
618(1)
18.4.2 Constant Strain Rate Experiments
619(4)
18.4.3 Viscoelastic Measurements
623(1)
18.4.4 Case of Strain-Dependent Behavior
623(2)
18.4.5 Case of Very Soft Materials and Influence of Adhesion
625(1)
18.5 Special Case of Coatings Configuration Under Indentation Testing
626(2)
18.6 Conclusions
628(1)
References
629(2)
19 Adhesion Measurement of Thin Films and Coatings: Relevance to Biomedical Applications
631(40)
Wei-Sheng Le
Kash Mittal
Ajay Kumar
19.1 Introduction
631(3)
19.2 Mechanical Test Methods of Adhesion Measurement
634(20)
19.2.1 Peel Test
634(1)
19.2.2 Scribe (Scratch) Test
635(5)
19.2.3 Pull-Off Test
640(3)
19.2.4 Blister Test
643(1)
19.2.5 Microindentation Test
644(4)
19.2.6 Small Punch Test
648(1)
19.2.7 Edge Delamination Test
649(3)
19.2.8 Four-Point Bending Test
652(2)
19.3 Summary and Remarks
654(2)
Appendix
656(9)
References
665(6)
20 Functional Tests for Biocompatibility
671(36)
Joseph McConigle
Thomas J. Webster
20.1 Introduction
671(1)
20.2 Inflammation
672(3)
20.2.1 Macrophage Activation
673(1)
20.2.2 Cytokines
673(1)
20.2.3 Histology
674(1)
20.3 Blood Compatibility
675(10)
20.3.1 Protein and Fibrinogen Adsorption
676(4)
20.3.2 Platelet Adhesion and Activation
680(1)
20.3.3 Hemolysis
681(1)
20.3.4 Complement Activation
681(1)
20.3.5 Clotting and Thrombin Activity Testing
682(1)
20.3.6 Blood Loop Assays
682(1)
20.3.7 In Vivo Thrombosis Assays
683(2)
20.4 Wound Healing
685(3)
20.4.1 Cell Growth
685(2)
20.4.2 Skin Wound Healing Models
687(1)
20.5 Encapsulation
688(3)
20.5.1 Drug Transport
689(1)
20.5.2 Histology (Foreign Body Response)
690(1)
20.6 Tissue Integration
691(1)
20.6.1 Cell Attachment
691(1)
20.6.2 Orthopedics/Mineralization/Osteoblast/Osteoclast Activation
692(1)
20.7 Vascularization
692(7)
20.7.1 Endothelial In Vitro Cell Assays
693(1)
20.7.2 Angiogenesis In Vitro Assays
694(1)
20.7.3 Endothelialization
695(2)
20.7.4 Vascular Staining and Imaging
697(1)
20.7.5 Functional Blood Flow Measurements
698(1)
20.8 Toxicity
699(1)
20.8.1 In Vitro Tests
699(1)
20.8.2 In Vivo Tests
699(1)
20.9 Infection
700(1)
20.9.1 In Vitro Tests
700(1)
20.9.2 In Vivo Tests
701(1)
20.10 When to Move In Vivo?
701(1)
References
702(5)
21 Analytical Requirements for Drug Eluting Stents
707(16)
Lori Alquier
Shrirang V. Ranade
21.1 Introduction
707(1)
21.2 Instrumentation
708(1)
21.3 API and Excipient Characterization
709(3)
21.4 Analytical Methods
712(7)
21.4.1 Appearance
712(1)
21.4.2 Identification
713(1)
21.4.3 Drug Assay and Related Impurities/ Degradation Products
713(1)
21.4.4 Residual Solvents (Organic Volatile Impurities)
714(1)
21.4.5 Uniformity of Dosage Units (Content Uniformity)
714(1)
21.4.6 Polymer Molecular Weight and Content
715(1)
21.4.7 Drug Elution
716(2)
21.4.8 Leachables and Extractables
718(1)
21.4.9 Specifications
719(1)
21.5 Conclusion
719(1)
References
719(4)
Part 5 Regulatory Overview 723(20)
22 Regulations for Medical Devices and Coatings
725(18)
Robert J. Klepinski
22.1 Introduction
725(1)
22.2 Types of Regulated Products
726(6)
22.2.1 Devices
726(2)
22.2.2 Drugs
728(1)
22.2.3 Biologics
729(1)
22.2.4 Combination Products
729(2)
22.2.5 Human Tissue
731(1)
22.3 Scope of Regulation
732(1)
22.4 Marketing Clearance of Medical Devices
733(4)
22.4.1 PMA
734(1)
22.4.2 Premarket Notification (PMN or 510(k))
734(2)
22.4.3 Marketing Clearance of Combination Products
736(1)
22.5 Comparison to EU Regulation
737(2)
22.6 Good Manufacturing Practices
739(6)
22.6.1 Device GMPs
739(1)
22.6.2 Drug GMPs
740(1)
22.6.3 Combination Products
741(2)
Part 6 Future of Coating Technologies 743(10)
23 The Future of Biomedical Coatings Technologies
745(8)
Shrirang V. Ranade
David A. Glocker
23.1 Introduction
745(4)
23.2 The Continuing Evolution of Biomaterials
749(1)
23.3 Tissue Engineering and Regenerative Medicine
749(1)
23.4 Coating Process Development
750(1)
References
751(2)
Index 753
Dr. David Glocker has worked in the fields of thin film deposition and plasma treatment for over 35 years. He spent fourteen years at the Eastman Kodak Company, where he led a group responsible for research on PVD coatings and coating processes and methods for the plasma modification of polymers. In 1993 he founded Isoflux Incorporated to manufacture cylindrical magnetron sputtering cathodes and develop coating processes employing that technology. Several medical device manufacturers now use Isoflux cathodes and related patents in both research and manufacturing. Dr. Glocker is an inventor or co-inventor on 32 US patents as well as a number of foreign counterparts and is the author of numerous articles and presentations. He recently retired from Isoflux and consults.

Dr. Shrirang Ranade, Technical Development Leader at Genentech, Inc., a member of the Roche Group, has spent over 15 years working within large medical device and Pharma (F. Hoffman-La Roche, Johnson & Johnson and Boston Scientific) in the field of biomaterials, coatings and drug delivery devices. He obtained a Bachelor of Engineering from the University of Poona, a Master of Science from the University of Manchester Institute of Science & Technology and later a Ph.D. in Polymer Science from the University of Connecticut. Through his career he has been involved in research and development of medical devices for combination products in several forms: coronary drug eluting stents, balloon catheters, sinuplasty devices, orthopaedic scaffolds, biodegradable coatings and lately an implantable ocular drug delivery system.