Preface |
|
xxi | |
Part 1 Introduction |
|
1 | (26) |
|
1 Historical Perspectives on Biomedical Coatings in Medical Devices |
|
|
3 | (24) |
|
|
|
|
4 | (1) |
|
1.2 Improving Physical Properties of Biomaterials: Hydrophilic, Lubricious Coatings |
|
|
5 | (2) |
|
1.3 Modulating Host-Biomaterial Interactions: Biologically Active Coatings |
|
|
7 | (8) |
|
|
7 | (2) |
|
1.3.2 Antimicrobial Coatings |
|
|
9 | (1) |
|
1.3.2.1 Antimicrobial-Releasing Materials |
|
|
11 | (1) |
|
1.3.2.2 Nonadhesive Surfaces |
|
|
12 | (1) |
|
1.3.2.3 Promoting Tissue Integration |
|
|
12 | (2) |
|
1.3.3 Drug-Eluting Coatings |
|
|
14 | (1) |
|
1.4 Bioinert Coatings Redressed? Nonfouling Coatings |
|
|
15 | (1) |
|
1.5 Future Biomedical Coatings |
|
|
16 | (2) |
|
|
18 | (9) |
Part 2 Coating Applications |
|
27 | (206) |
|
2 Antimicrobial Coatings and Other Surface Modifications for Infection Prevention |
|
|
29 | (46) |
|
|
|
|
29 | (6) |
|
2.2 Genesis of Device-Related Infections |
|
|
35 | (3) |
|
2.3 Antimicrobial Coatings |
|
|
38 | (11) |
|
|
40 | (1) |
|
2.3.2 Non-Antibiotic Antimicrobial Compounds |
|
|
41 | (1) |
|
2.3.2.1 Organic Compounds |
|
|
41 | (1) |
|
2.3.2.2 Silver and Other Metals |
|
|
48 | (1) |
|
2.4 Non-Eluting Antimicrobial Surfaces |
|
|
49 | (4) |
|
2.4.1 Pendant Chemistries |
|
|
49 | (1) |
|
2.4.1.1 Zwitterionic Surfaces |
|
|
51 | (1) |
|
2.4.1.2 Topographical Modifications |
|
|
52 | (1) |
|
2.5 Coating and Surface Modification Technologies |
|
|
53 | (4) |
|
2.5.1 Passive-Release Technologies |
|
|
53 | (1) |
|
2.5.1.1 Diffusion-Based Antimicrobial Coatings |
|
|
53 | (1) |
|
2.5.1.2 Solvent Imbibing of Antimicrobials |
|
|
54 | (1) |
|
2.5.2 Sputter Coating Systems |
|
|
55 | (1) |
|
2.5.3 Covalent Surface Modification |
|
|
55 | (1) |
|
|
56 | (1) |
|
2.6 Regulatory Considerations |
|
|
57 | (1) |
|
|
58 | (3) |
|
2.7.1 Antimicrobial Resistance |
|
|
58 | (3) |
|
|
61 | (1) |
|
|
61 | (14) |
|
3 Drug Delivery Coatings for Coronary Stents |
|
|
75 | (40) |
|
|
|
|
75 | (6) |
|
3.1.1 Coronary Artery Disease: Treatment Options and Issues |
|
|
76 | (3) |
|
|
79 | (1) |
|
3.1.3 Drug-Eluting Stents |
|
|
80 | (1) |
|
3.2 Polymer Coatings for DES |
|
|
81 | (5) |
|
3.2.1 Requirements for Coronary Stent Coatings |
|
|
81 | (1) |
|
3.2.2 Physical and Chemical Properties |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
3.2.2.3 Compatibility with the Drug and Drug Elution |
|
|
83 | (1) |
|
3.2.3 Biological Properties |
|
|
84 | (1) |
|
3.2.3.1 Biocompatibility with Vascular Tissue |
|
|
84 | (1) |
|
3.2.4 Coating Optimization |
|
|
85 | (1) |
|
3.3 Biostable (Non-Bioabsorbable) Polymers |
|
|
86 | (13) |
|
3.3.1 Poly(Ethylene-Co-Vinyl Acetate)/Poly(n-Butylmethacrylate)/Parylene C |
|
|
87 | (2) |
|
3.3.2 Poly(Styrene-block-Isobutylene-block-Styrene) (SIBS) |
|
|
89 | (3) |
|
3.3.3 Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/ Poly(n-Butyl Methacrylate) |
|
|
92 | (2) |
|
3.3.4 Phosphorylcholine-Based Polymer Coating System (PC) |
|
|
94 | (2) |
|
3.3.5 BIOLINX® Polymer Coating |
|
|
96 | (3) |
|
3.4 Bioabsorbable Polymers |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (11) |
|
4 Coatings for Radiopacity |
|
|
115 | (16) |
|
|
|
4.1 Principles of Radiography |
|
|
115 | (1) |
|
4.2 Use of Radiopaque Materials in Medical Devices |
|
|
116 | (1) |
|
|
117 | (1) |
|
4.3.1 Purpose of Radiopaque Fillers in Polymers |
|
|
117 | (1) |
|
4.4 Types of Radiopaque Fillers |
|
|
117 | (4) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (2) |
|
4.4.4 Material Modifications to Enhance Radiopacity |
|
|
121 | (1) |
|
4.5 Other Radiographic Materials and Coating Systems |
|
|
121 | (1) |
|
4.5.1 Metal-Loaded Polymer Suspensions |
|
|
121 | (1) |
|
4.6 Radiopaque Coatings by Physical Vapor Deposition |
|
|
122 | (2) |
|
4.7 Challenges in Producing Radiopaque Coatings Using PVD |
|
|
124 | (1) |
|
4.8 Gold Radiopaque Coatings |
|
|
125 | (1) |
|
4.9 Tantalum Radiopaque Coatings |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
130 | (1) |
|
5 Biocompatibility and Medical Device Coatings |
|
|
131 | (50) |
|
|
|
|
|
131 | (3) |
|
5.2 Challenges with Medical Devices |
|
|
134 | (14) |
|
|
134 | (3) |
|
|
137 | (2) |
|
5.2.3 Blood Compatibility |
|
|
139 | (3) |
|
|
142 | (2) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (2) |
|
5.3 Examples of Products Coated to Improve Biocompatibility |
|
|
148 | (9) |
|
|
148 | (2) |
|
5.3.2 Surgical Mesh Materials |
|
|
150 | (1) |
|
5.3.3 Orthopedic Implants |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (1) |
|
5.3.6 Neurological Devices |
|
|
154 | (2) |
|
5.3.7 Catheters/Endotracheal Tubes |
|
|
156 | (1) |
|
|
156 | (1) |
|
5.4 Types of Biocompatible Coatings |
|
|
157 | (13) |
|
5.4.1 Polymers and Surface Modification |
|
|
157 | (1) |
|
5.4.2 Surface Preparation and Polymer Deposition |
|
|
157 | (3) |
|
|
160 | (1) |
|
5.4.4 Biocompatible Biomaterials |
|
|
161 | (1) |
|
5.4.5 Hydrophilic and Nonfouling Polymers |
|
|
161 | (2) |
|
5.4.6 Small Molecule Pharmaceuticals |
|
|
163 | (1) |
|
5.4.7 Extracellular Matrix Proteins and Peptides |
|
|
163 | (2) |
|
5.4.8 Heparin and Polysaccharides |
|
|
165 | (1) |
|
5.4.9 Antibody and Other Biomolecule Coatings |
|
|
166 | (1) |
|
5.4.10 Orthopedics/Calcium Phosphate/BMP |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (2) |
|
|
170 | (1) |
|
5.5.2 Manufacturing Challenges |
|
|
171 | (1) |
|
5.5.3 Animal-Derived Materials |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (9) |
|
6 Tribological Coatings for Biomedical Devices |
|
|
181 | (52) |
|
|
|
181 | (6) |
|
6.2 Hard Thin Film Coatings for Implants |
|
|
187 | (7) |
|
6.2.1 Titanium- and Chromium-Based Thin Film Materials |
|
|
188 | (6) |
|
6.3 Binary Carbon-Based Thin Film Materials: Diamond, Hard Carbon and Amorphous Carbon |
|
|
194 | (6) |
|
6.3.1 Tribological Properties |
|
|
194 | (6) |
|
6.4 Progress of DLC, ta-C and a-C:H Films for Hip and Knee Implants |
|
|
200 | (8) |
|
6.4.1 Diamond-like Carbon |
|
|
200 | (5) |
|
6.4.2 Biocompatibility and Thrombus Formation |
|
|
205 | (1) |
|
6.4.3 Aluminum Oxide Thin Films |
|
|
206 | (2) |
|
6.5 Wear-Resistant Coatings for Stents and Catheters |
|
|
208 | (2) |
|
6.6 Wear-Resistant Coatings for Angioplasty Devices |
|
|
210 | (1) |
|
6.7 Scalpel Blades and Surgical Instruments |
|
|
210 | (1) |
|
6.8 Multifunctional, Nanostructured, Nanolaminate, and Nanocomposite Tribological Materials |
|
|
210 | (12) |
|
|
222 | (11) |
Part 3 Coating and Surface Modification Methods |
|
233 | (348) |
|
|
235 | (12) |
|
|
7.1 Description and Basic Steps |
|
|
235 | (1) |
|
7.2 Equipment and Coating Application |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
236 | (1) |
|
7.3 Coating Solution Containers |
|
|
237 | (1) |
|
7.4 Coating Parameters and Controls |
|
|
238 | (2) |
|
7.5 Role of Solution Viscosity |
|
|
240 | (1) |
|
7.5.1 Viscosity and Withdrawal Velocity |
|
|
240 | (1) |
|
7.5.2 Molecular Weight of Polymers |
|
|
240 | (1) |
|
7.5.3 Viscosity as a Function of Solids Content |
|
|
241 | (1) |
|
|
241 | (3) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
7.7 Process Considerations |
|
|
244 | (3) |
|
8 Inkjet Technology and Its Application in Biomedical Coating |
|
|
247 | (62) |
|
|
|
|
|
247 | (1) |
|
|
248 | (12) |
|
8.2.1 Continuous Inkjet (CIJ) |
|
|
248 | (2) |
|
8.2.2 Drop-on-Demand (DOD) |
|
|
250 | (1) |
|
8.2.2.1 General Discussion |
|
|
250 | (1) |
|
8.2.2.2 Less Common Actuation Methods |
|
|
250 | (1) |
|
|
252 | (1) |
|
8.2.2.4 Piezoelectric Inkjet |
|
|
254 | (4) |
|
8.2.3 Comparison of CIJ and DOD |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
260 | (8) |
|
8.3.1 Dispenser/Printhead |
|
|
261 | (2) |
|
|
263 | (1) |
|
8.3.3 Auxiliary Equipment |
|
|
264 | (1) |
|
8.3.3.1 Drive Electronics |
|
|
264 | (1) |
|
|
264 | (1) |
|
8.3.3.3 Temperature Control |
|
|
265 | (1) |
|
8.3.3.4 Environmental Control |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (1) |
|
8.3.3.7 Other Auxiliary Components |
|
|
267 | (1) |
|
|
267 | (1) |
|
8.3.5 Printing Platform Manufacturers |
|
|
268 | (1) |
|
|
268 | (12) |
|
8.4.1 Surface Activation and Passivation |
|
|
268 | (1) |
|
|
268 | (1) |
|
8.4.1.2 Tissue MALDI - Application of Matrix Solutions |
|
|
268 | (1) |
|
8.4.1.3 Nerve Conduits - Fabrication and Coating to Create a Nerve Growth Factor (NGF) Gradient |
|
|
270 | (1) |
|
8.4.1.4 Coating for Activation |
|
|
271 | (5) |
|
8.4.2 Drug Release/Delivery |
|
|
276 | (4) |
|
8.5 Limitations and Ways around Them |
|
|
280 | (13) |
|
8.5.1 Requirements of Dispensed Materials |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
8.5.1.3 Volatility/Boiling Point |
|
|
281 | (1) |
|
8.5.2 Operational Limitations |
|
|
281 | (1) |
|
8.5.3 Liquid - Substrate Interaction |
|
|
282 | (1) |
|
8.5.3.1 Single or Multiple Drops Placed at one Location |
|
|
282 | (1) |
|
8.5.3.2 Feature Generation (Lines or Area Coverage) by Drop Distribution |
|
|
284 | (3) |
|
|
287 | (1) |
|
|
288 | (1) |
|
8.5.4.2 Drop Placement Errors |
|
|
288 | (2) |
|
8.5.5 Minimizing Operational Limits and Failure |
|
|
290 | (1) |
|
|
290 | (1) |
|
8.5.5.2 Solution Formulation |
|
|
290 | (1) |
|
8.5.5.3 Substrate Treatment and Containment Features |
|
|
292 | (1) |
|
|
292 | (1) |
|
8.5.5.5 Other Elements of the Printing Process |
|
|
293 | (1) |
|
8.6 Manufacturing Advantages and Future Directions |
|
|
293 | (6) |
|
|
293 | (1) |
|
8.6.2 Potential Applications |
|
|
294 | (1) |
|
8.6.2.1 Tissue Engineering |
|
|
295 | (1) |
|
|
295 | (1) |
|
8.6.2.3 Skin Regeneration |
|
|
295 | (1) |
|
8.6.2.4 Transdermal Drug Delivery |
|
|
297 | (1) |
|
8.6.2.5 Visual Prosthesis |
|
|
298 | (1) |
|
8.6.2.6 Packaging - Adhesives |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (9) |
|
9 Direct Capillary Printing in Medical Device Manufacture |
|
|
309 | (64) |
|
|
|
309 | (11) |
|
9.1.1 Origins and Brief History |
|
|
310 | (2) |
|
9.1.2 Competitive Technologies |
|
|
312 | (1) |
|
|
312 | (1) |
|
9.1.2.2 Competitors Outside of Direct Writing |
|
|
313 | (1) |
|
9.1.2.3 Example of the Evolution of Manufacturing Techniques over Time |
|
|
314 | (2) |
|
9.1.3 Strategic Considerations for Medical Device Manufacture |
|
|
316 | (3) |
|
|
319 | (1) |
|
9.2 Fundamental Elements of Direct Capillary Printing |
|
|
320 | (17) |
|
|
321 | (1) |
|
9.2.1.1 Single-Phase Inks |
|
|
322 | (1) |
|
|
323 | (1) |
|
9.2.1.3 Curing Temperature |
|
|
323 | (4) |
|
9.2.2 Applying Force to the Ink |
|
|
327 | (1) |
|
9.2.3 The Fluidic Channel |
|
|
328 | (1) |
|
|
328 | (3) |
|
9.2.5 The Motion Control System |
|
|
331 | (1) |
|
9.2.6 The Ink-Substrate-Printhead System |
|
|
331 | (2) |
|
9.2.7 Special Considerations for Medical Devices |
|
|
333 | (1) |
|
9.2.7.1 Adhesion and Cohesion Testing |
|
|
333 | (1) |
|
|
333 | (1) |
|
9.2.7.3 Electrochemical Stability |
|
|
335 | (1) |
|
9.2.7.4 Conflict Minerals |
|
|
335 | (2) |
|
9.3 Practical Operational Considerations |
|
|
337 | (12) |
|
9.3.1 Starting, Stopping, and Idling |
|
|
337 | (1) |
|
|
338 | (3) |
|
|
341 | (1) |
|
|
342 | (1) |
|
9.3.5 Lateral Misalignment, Eccentricity, and Substrate Shape Errors |
|
|
343 | (2) |
|
9.3.6 Pattern and Tool Path Effects |
|
|
345 | (3) |
|
9.3.7 Multi-Level Pattern Effects |
|
|
348 | (1) |
|
9.3.8 Process Integration |
|
|
348 | (1) |
|
9.4 Manufacturing Considerations |
|
|
349 | (3) |
|
9.4.1 Low Volume Manufacturing |
|
|
350 | (1) |
|
9.4.2 High Volume Manufacturing |
|
|
351 | (1) |
|
9.5 Medical Device Examples |
|
|
352 | (15) |
|
9.5.1 Tube and Catheter Devices |
|
|
352 | (1) |
|
9.5.1.1 Instrumented Endotracheal Tube for Cardiac Output Monitoring |
|
|
352 | (1) |
|
9.5.1.2 LED-Instrumented Medical Devices for Photodynamic Therapy |
|
|
355 | (2) |
|
9.5.2 Balloon-Based Devices |
|
|
357 | (1) |
|
9.5.2.1 Improved Radiopaque Markings for a Bone Fracture Repair Catheter |
|
|
357 | (1) |
|
9.5.2.2 Ablation Electrodes for Denervation |
|
|
361 | (2) |
|
9.5.3 Ceramic- and Metal-Based Devices |
|
|
363 | (1) |
|
9.5.3.1 Bipolar Hemostasis Ablation Probe |
|
|
364 | (1) |
|
9.5.3.2 Immersion Heater for Ablative Therapies |
|
|
365 | (1) |
|
|
366 | (1) |
|
9.5.4.1 Flat Flexible Electrode Array |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (2) |
|
|
369 | (1) |
|
|
369 | (4) |
|
10 Sol-Gel Coating Methods in Biomedical Systems |
|
|
373 | (30) |
|
|
|
374 | (3) |
|
10.2 Overview of Sol-Gel Coatings in Biomedical Systems |
|
|
377 | (4) |
|
|
379 | (1) |
|
10.2.2 Surface Passivation |
|
|
379 | (1) |
|
|
380 | (1) |
|
10.2.4 Release and Growth Media |
|
|
381 | (1) |
|
|
381 | (4) |
|
10.3.1 Chemistry and Processing |
|
|
382 | (3) |
|
10.4 Coating Methods and Processes |
|
|
385 | (5) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
10.5 Factors Influencing Coatings Characteristics/Performance |
|
|
390 | (4) |
|
10.5.1 Processing Conditions |
|
|
391 | (1) |
|
10.5.2 Native Composition/Excipients |
|
|
392 | (1) |
|
|
393 | (1) |
|
|
393 | (1) |
|
10.5.5 Uniformity and Homogeneity |
|
|
394 | (1) |
|
10.6 Summary and Concluding Remarks |
|
|
394 | (3) |
|
|
397 | (6) |
|
11 Chemical Vapor Deposition |
|
|
403 | (54) |
|
|
|
403 | (2) |
|
|
405 | (5) |
|
11.2.1 Precursor Selection |
|
|
406 | (1) |
|
|
407 | (1) |
|
11.2.3 Reactor Configuration |
|
|
407 | (1) |
|
11.2.4 Precursor Activation |
|
|
408 | (1) |
|
11.2.5 Pressure Management |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
410 | (1) |
|
|
410 | (4) |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
412 | (1) |
|
11.3.4 Rate-Limiting Behavior |
|
|
413 | (1) |
|
|
414 | (28) |
|
11.4.1 Thermal CVD of Graphene |
|
|
414 | (7) |
|
11.4.2 HWCVD of Nanodiamond |
|
|
421 | (5) |
|
11.4.3 ALD of Oxides and Nitrides |
|
|
426 | (7) |
|
|
433 | (9) |
|
|
442 | (1) |
|
|
443 | (14) |
|
12 Introduction to Plasmas Used for Coating Processes |
|
|
457 | (16) |
|
|
|
457 | (2) |
|
|
459 | (4) |
|
|
463 | (1) |
|
12.4 RF Diode Glow Discharges |
|
|
464 | (2) |
|
12.5 Ionization in RF Diode Glow Discharges |
|
|
466 | (1) |
|
12.6 Inductively Coupled RF Discharges |
|
|
466 | (2) |
|
12.7 Mid-Frequency AC Discharges |
|
|
468 | (1) |
|
12.8 Pulsed DC Discharges |
|
|
469 | (1) |
|
12.9 Comparison of Plasma Properties |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
13 Ion Implantation: Tribological Applications |
|
|
473 | (22) |
|
|
|
473 | (1) |
|
|
474 | (13) |
|
13.2.1 Nitrogen Ion Implantation |
|
|
474 | (2) |
|
13.2.2 Implantation of C+ Ions |
|
|
476 | (3) |
|
|
479 | (1) |
|
13.2.4 Tribological Testing |
|
|
479 | (8) |
|
13.3 Nanocrystalline Diamond |
|
|
487 | (5) |
|
13.3.1 Ti Ion Implanting into DLC |
|
|
491 | (1) |
|
|
492 | (3) |
|
14 Plasma-Enhanced Chemical Vapor Deposition |
|
|
495 | (36) |
|
|
|
495 | (2) |
|
|
497 | (4) |
|
14.2.1 Plasma Configuration |
|
|
498 | (1) |
|
|
499 | (1) |
|
|
500 | (1) |
|
14.2.4 Plasma Diagnostics |
|
|
501 | (1) |
|
14.3 Plasma Effects on Materials Deposition |
|
|
501 | (19) |
|
14.3.1 Plasma Configuration: Titanium Dioxide |
|
|
502 | (5) |
|
14.3.2 Plasma Chemistry: Ultrananocrystalline Diamond |
|
|
507 | (6) |
|
14.3.3 Plasma Electric Field: Carbon Nanofibers |
|
|
513 | (7) |
|
|
520 | (1) |
|
|
521 | (10) |
|
15 Sputter Deposition and Sputtered Coatings for Biomedical Applications |
|
|
531 | (22) |
|
|
|
531 | (2) |
|
15.2 Overview of Sputter Coating |
|
|
533 | (3) |
|
15.3 Characteristics of Sputtered Atoms |
|
|
536 | (3) |
|
|
539 | (2) |
|
15.5 Relationship between Process Parameters and Coating Properties |
|
|
541 | (3) |
|
|
544 | (1) |
|
15.7 Adhesion and Stress in Sputtered Coatings |
|
|
545 | (1) |
|
15.8 Sputtering Electrically Insulating Materials |
|
|
546 | (3) |
|
|
549 | (1) |
|
15.10 Summary and Conclusions |
|
|
549 | (1) |
|
|
550 | (3) |
|
16 Cathodic Arc Vapor Deposition |
|
|
553 | (28) |
|
|
|
553 | (3) |
|
16.2 Medical Uses of Cathodic Arc Titanium Nitride Coatings |
|
|
556 | (1) |
|
16.3 Brief History and Commercial Advancement of Cathodic Arcs |
|
|
557 | (2) |
|
16.4 Review of Arc Devices |
|
|
559 | (2) |
|
16.5 Description of PVD Coating Manufacturing |
|
|
561 | (6) |
|
|
562 | (1) |
|
|
563 | (1) |
|
16.5.3 Coating Fixturing and Masking |
|
|
563 | (1) |
|
|
563 | (1) |
|
16.5.4.1 Substrate Loading |
|
|
564 | (1) |
|
|
565 | (1) |
|
16.5.4.3 Substrate Heating and Cleaning |
|
|
565 | (1) |
|
|
565 | (1) |
|
|
566 | (1) |
|
|
566 | (1) |
|
16.6 Macroparticle Generation and Mitigation |
|
|
567 | (1) |
|
16.7 Considerations for Coating Success |
|
|
568 | (8) |
|
16.7.1 Surface Finish and Contaminants |
|
|
569 | (1) |
|
|
570 | (1) |
|
16.7.1.2 Abrasive and Chemical Cleaning |
|
|
570 | (1) |
|
16.7.1.3 Unbalanced Final Grinding |
|
|
570 | (1) |
|
16.7.1.4 Low Temperature Materials |
|
|
571 | (1) |
|
16.7.1.5 Press Fit Components |
|
|
571 | (1) |
|
16.7.1.6 Polishing Carriers |
|
|
571 | (1) |
|
|
572 | (1) |
|
16.7.2.1 Ultrasonic Cleaning |
|
|
572 | (1) |
|
|
572 | (1) |
|
16.7.3 PVD Masking and Fixturing |
|
|
573 | (1) |
|
16.7.4 Inspection and Certification |
|
|
573 | (1) |
|
16.7.4.1 Coating Thickness |
|
|
574 | (1) |
|
16.7.4.2 Coating Adhesion |
|
|
575 | (1) |
|
16.7.4.3 Post Cleaning and Shipping |
|
|
576 | (1) |
|
16.8 Materials Used in Biomedical PVD Coatings |
|
|
576 | (1) |
|
|
576 | (5) |
Part 4 Functional Tests |
|
581 | (142) |
|
17 Antimicrobial Coatings Efficacy Evaluation |
|
|
583 | (22) |
|
|
|
|
583 | (1) |
|
|
584 | (6) |
|
17.2.1 Biofilm Development |
|
|
584 | (2) |
|
17.2.2 Quantitative Recovery of Cells from Surfaces |
|
|
586 | (1) |
|
17.2.3 Zone-of-Inhibition (ZOI) Assays |
|
|
587 | (1) |
|
17.2.4 Antimicrobial Surface Activity (Agar Overlay Technique) |
|
|
587 | (1) |
|
17.2.5 Direct Observation |
|
|
588 | (1) |
|
17.2.5.1 Epifluorescence Microscopy |
|
|
588 | (1) |
|
17.2.5.2 Scanning and Transmission Electron Microscopy |
|
|
588 | (1) |
|
17.2.5.3 Atomic Force Microscopy |
|
|
589 | (1) |
|
17.2.6 Characterization of Bacterial and Fungal Cells |
|
|
590 | (1) |
|
17.3 In-Vivo (Animal) Methods |
|
|
590 | (1) |
|
17.4 Equipment and Laboratory Resources |
|
|
590 | (1) |
|
17.5 Human Clinical Trial Considerations |
|
|
590 | (1) |
|
17.6 Regulatory Considerations |
|
|
590 | (6) |
|
|
590 | (5) |
|
|
595 | (1) |
|
|
595 | (1) |
|
|
596 | (9) |
|
18 Mechanical Characterization of Biomaterials: Functional Tests for Hardness |
|
|
605 | (26) |
|
|
|
605 | (2) |
|
18.2 Basic Principles of Hardness and Indentation Testing |
|
|
607 | (4) |
|
18.2.1 Classic Hardness Scales |
|
|
607 | (1) |
|
18.2.1.1 Brinell Hardness Number |
|
|
607 | (1) |
|
|
610 | (1) |
|
18.2.1.3 Vickers Hardness |
|
|
610 | (1) |
|
|
610 | (1) |
|
18.2.1.5 Rockwell Hardness Scale |
|
|
611 | (1) |
|
18.3 Depth-Sensing Indentation Testing |
|
|
611 | (6) |
|
18.3.1 Determination of the Contact Depth |
|
|
612 | (3) |
|
18.3.2 Determination of the Contact Area |
|
|
615 | (1) |
|
18.3.3 Determination of the Nanoindentation Hardness |
|
|
616 | (1) |
|
18.3.4 Determination of the Reduced and Young's Elastic Modulus |
|
|
617 | (1) |
|
18.4 Dynamic Indentation Testing: A More Advanced Hardness Measurement Technique for More Complex Material Behavior |
|
|
617 | (9) |
|
18.4.1 Continuous Stiffness Measurement Technique |
|
|
618 | (1) |
|
18.4.2 Constant Strain Rate Experiments |
|
|
619 | (4) |
|
18.4.3 Viscoelastic Measurements |
|
|
623 | (1) |
|
18.4.4 Case of Strain-Dependent Behavior |
|
|
623 | (2) |
|
18.4.5 Case of Very Soft Materials and Influence of Adhesion |
|
|
625 | (1) |
|
18.5 Special Case of Coatings Configuration Under Indentation Testing |
|
|
626 | (2) |
|
|
628 | (1) |
|
|
629 | (2) |
|
19 Adhesion Measurement of Thin Films and Coatings: Relevance to Biomedical Applications |
|
|
631 | (40) |
|
|
|
|
|
631 | (3) |
|
19.2 Mechanical Test Methods of Adhesion Measurement |
|
|
634 | (20) |
|
|
634 | (1) |
|
19.2.2 Scribe (Scratch) Test |
|
|
635 | (5) |
|
|
640 | (3) |
|
|
643 | (1) |
|
19.2.5 Microindentation Test |
|
|
644 | (4) |
|
|
648 | (1) |
|
19.2.7 Edge Delamination Test |
|
|
649 | (3) |
|
19.2.8 Four-Point Bending Test |
|
|
652 | (2) |
|
|
654 | (2) |
|
|
656 | (9) |
|
|
665 | (6) |
|
20 Functional Tests for Biocompatibility |
|
|
671 | (36) |
|
|
|
|
671 | (1) |
|
|
672 | (3) |
|
20.2.1 Macrophage Activation |
|
|
673 | (1) |
|
|
673 | (1) |
|
|
674 | (1) |
|
|
675 | (10) |
|
20.3.1 Protein and Fibrinogen Adsorption |
|
|
676 | (4) |
|
20.3.2 Platelet Adhesion and Activation |
|
|
680 | (1) |
|
|
681 | (1) |
|
20.3.4 Complement Activation |
|
|
681 | (1) |
|
20.3.5 Clotting and Thrombin Activity Testing |
|
|
682 | (1) |
|
|
682 | (1) |
|
20.3.7 In Vivo Thrombosis Assays |
|
|
683 | (2) |
|
|
685 | (3) |
|
|
685 | (2) |
|
20.4.2 Skin Wound Healing Models |
|
|
687 | (1) |
|
|
688 | (3) |
|
|
689 | (1) |
|
20.5.2 Histology (Foreign Body Response) |
|
|
690 | (1) |
|
|
691 | (1) |
|
|
691 | (1) |
|
20.6.2 Orthopedics/Mineralization/Osteoblast/Osteoclast Activation |
|
|
692 | (1) |
|
|
692 | (7) |
|
20.7.1 Endothelial In Vitro Cell Assays |
|
|
693 | (1) |
|
20.7.2 Angiogenesis In Vitro Assays |
|
|
694 | (1) |
|
20.7.3 Endothelialization |
|
|
695 | (2) |
|
20.7.4 Vascular Staining and Imaging |
|
|
697 | (1) |
|
20.7.5 Functional Blood Flow Measurements |
|
|
698 | (1) |
|
|
699 | (1) |
|
|
699 | (1) |
|
|
699 | (1) |
|
|
700 | (1) |
|
|
700 | (1) |
|
|
701 | (1) |
|
20.10 When to Move In Vivo? |
|
|
701 | (1) |
|
|
702 | (5) |
|
21 Analytical Requirements for Drug Eluting Stents |
|
|
707 | (16) |
|
|
|
|
707 | (1) |
|
|
708 | (1) |
|
21.3 API and Excipient Characterization |
|
|
709 | (3) |
|
|
712 | (7) |
|
|
712 | (1) |
|
|
713 | (1) |
|
21.4.3 Drug Assay and Related Impurities/ Degradation Products |
|
|
713 | (1) |
|
21.4.4 Residual Solvents (Organic Volatile Impurities) |
|
|
714 | (1) |
|
21.4.5 Uniformity of Dosage Units (Content Uniformity) |
|
|
714 | (1) |
|
21.4.6 Polymer Molecular Weight and Content |
|
|
715 | (1) |
|
|
716 | (2) |
|
21.4.8 Leachables and Extractables |
|
|
718 | (1) |
|
|
719 | (1) |
|
|
719 | (1) |
|
|
719 | (4) |
Part 5 Regulatory Overview |
|
723 | (20) |
|
22 Regulations for Medical Devices and Coatings |
|
|
725 | (18) |
|
|
|
725 | (1) |
|
22.2 Types of Regulated Products |
|
|
726 | (6) |
|
|
726 | (2) |
|
|
728 | (1) |
|
|
729 | (1) |
|
22.2.4 Combination Products |
|
|
729 | (2) |
|
|
731 | (1) |
|
|
732 | (1) |
|
22.4 Marketing Clearance of Medical Devices |
|
|
733 | (4) |
|
|
734 | (1) |
|
22.4.2 Premarket Notification (PMN or 510(k)) |
|
|
734 | (2) |
|
22.4.3 Marketing Clearance of Combination Products |
|
|
736 | (1) |
|
22.5 Comparison to EU Regulation |
|
|
737 | (2) |
|
22.6 Good Manufacturing Practices |
|
|
739 | (6) |
|
|
739 | (1) |
|
|
740 | (1) |
|
22.6.3 Combination Products |
|
|
741 | (2) |
Part 6 Future of Coating Technologies |
|
743 | (10) |
|
23 The Future of Biomedical Coatings Technologies |
|
|
745 | (8) |
|
|
|
|
745 | (4) |
|
23.2 The Continuing Evolution of Biomaterials |
|
|
749 | (1) |
|
23.3 Tissue Engineering and Regenerative Medicine |
|
|
749 | (1) |
|
23.4 Coating Process Development |
|
|
750 | (1) |
|
|
751 | (2) |
Index |
|
753 | |