Muutke küpsiste eelistusi

E-raamat: MEMS Silicon Oscillating Accelerometers and Readout Circuits [Taylor & Francis e-raamat]

Edited by
  • Taylor & Francis e-raamat
  • Hind: 138,48 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 197,84 €
  • Säästad 30%
Most MEMS accelerometers on the market today are capacitive accelerometers that are based on the displacement sensing mechanism. This book is intended to cover recent developments of MEMS silicon oscillating accelerometers (SOA), also referred to as MEMS resonant accelerometer. As contrast to the capacitive accelerometer, the MEMS SOA is based on the force sensing mechanism, where the input acceleration is converted to a frequency output.

MEMS Silicon Oscillating Accelerometers and Readout Circuits consists of six chapters and covers both MEMS sensor and readout circuit, and provides an in-depth coverage on the design and modelling of the MEMS SOA with several recently reported prototypes. The book is not only useful to researchers and engineers who are familiar with the topic, but also appeals to those who have general interests in MEMS inertial sensors. The book includes extensive references that provide further information on this topic.
Preface xi
List of Contributors
xv
List of Figures
xvii
List of Tables
xxvii
List of Abbreviations
xxix
List of Notations
xxxiii
1 Mechanical Design of Micromechanical Silicon Oscillating Accelerometer
1(24)
Anping Qiu
1.1 Introduction
1(2)
1.2 Mechanical Structure Design
3(16)
1.2.1 Theory of Operation
3(1)
1.2.2 Modelling of DETF Resonator for Closed-form Analysis
4(4)
1.2.3 Micro Lever Mechanism and Amplification Factor
8(5)
1.2.4 System Amplification Factor n'
13(1)
1.2.5 Scale Factor
13(1)
1.2.6 Bias
14(1)
1.2.7 Thermal Sensitivity
15(1)
1.2.8 Stiffness Nonlinearity
16(3)
1.3 Fabrication and Testing
19(4)
1.3.1 SOA Fabrication
19(2)
1.3.2 Testing
21(2)
1.4 Conclusion
23(1)
References
23(2)
2 Front-end Amplifiers for MEMS Silicon Oscillating Accelerometers
25(38)
Yang Zhao
Yong Ping Xu
2.1 Capacitive Sensing in MEMS Sensors
25(4)
2.2 Front-end Amplifiers for MEMS Oscillators
29(13)
2.2.1 Single-Stage Resistive Feedback TIA
29(1)
2.2.1.1 Stability and bandwidth
30(1)
2.2.1.2 Input-referred noise
31(3)
2.2.2 Two-Stage Resistive Feedback TIA
34(2)
2.2.3 T-Network Resistive Feedback TIA
36(1)
2.2.4 Charge-Sensing Amplifier (CSA)
37(3)
2.2.5 Capacitive Feedback TIA
40(2)
2.3 Front-end Amplifier for MEMS SOA
42(15)
2.3.1 Concept of MEMS SOA and its Front-end
42(3)
2.3.2 Continuous-Time Integrator-Differentiator-Based TIA
45(4)
2.3.3 Discrete-Time Integrator-Differentiator-Based Amplifier
49(5)
2.3.4 Front-end Based on Passive Charge Sensing
54(3)
2.4 Summary
57(2)
References
59(4)
3 MEMS Silicon Oscillating Accelerometer Readout Circuit
63(30)
Xi Wang
Yong Ping Xu
3.1 Introduction
64(5)
3.1.1 Concept of MEMS Silicon Oscillating Accelerometer (SOA)
64(1)
3.1.2 Readout Circuits for MEMS SOA
65(1)
3.1.3 Acceleration Noise Characterization
66(3)
3.2 Readout Circuit
69(7)
3.2.1 MEMS Oscillator
69(1)
3.2.1.1 Front-end amplifier
69(1)
3.2.1.2 Oscillation-sustaining circuit
70(1)
3.2.2 Amplitude Control
70(1)
3.2.2.1 Amplitude-stiffness effect
70(1)
3.2.2.2 Noise model of the AAC loo
71(2)
3.2.3 Phase Noise of the MEMS Oscillator
73(3)
3.3 Circuit Implementation
76(11)
3.3.1 Overall Readout Circuit at System Level
76(1)
3.3.2 Front-end Amplifier
76(3)
3.3.3 AAC Circuits
79(2)
3.3.4 Amplitude Detector
81(1)
3.3.5 Buffer
82(1)
3.3.6 Error Amplifier
83(3)
3.3.7 Variable Gain Amplifier (VGA)
86(1)
3.4 Performance
87(3)
3.5 Conclusion
90(1)
References
91(2)
4 An MEM Silicon Oscillating Accelerometer Employing a PLL and a Noise Shaping Frequency-to-Digital Converter
93(40)
Jian Zhao
Yong Ping Xu
Yan Su
4.1 Introduction
93(2)
4.2 PLL-Based MEMS SOA
95(6)
4.2.1 Noise Aliasing
96(3)
4.2.2 Start-up Issue
99(1)
4.2.3 PLL Phase Tracking
99(2)
4.3 PLL-Based Sigma-Delta FDC
101(9)
4.3.1 A Brief Review of Existing FDCs
102(1)
4.3.1.1 Reset counter-based FDC
102(1)
4.3.1.2 Delta-sigma FDC (X A FDC)
103(1)
4.3.1.3 PLL-based FDC (PLL-FDC)
104(1)
4.3.2 A Modified PLL-based FDC (MPLL-FDC)
105(2)
4.3.3 Analysis of Quantization Error in MPLL-FDC
107(3)
4.4 Stability of the PLL with a Hybrid PFD
110(4)
4.5 Noises in PLL-Based MEMS SOA
114(2)
4.6 Key Circuit Designs for PLL-based MEMS SOA
116(6)
4.6.1 Analog Front-end Amplifier
116(2)
4.6.2 Hybrid Mode Phase Frequency Detector
118(3)
4.6.3 Phase-Lock Loop with FDC
121(1)
4.7 Experiment Results of a Prototype PLL-based MEMS SOA
122(6)
4.7.1 Prototype Implementation
122(1)
4.7.2 FDC Measurement Results
123(1)
4.7.3 MEMS SOA Measurement Results
123(5)
4.8 Conclusion
128(1)
References
129(4)
5 A System-decomposition Model for MEMS Silicon Oscillating Accelerometer
133(30)
Jian Zhao
Yong Ping Xu
Yan Su
5.1 Introduction
133(3)
5.2 Silicon Oscillating Accelerometer
136(1)
5.3 Noise Sources
137(1)
5.3.1 Mechanical Noises
137(1)
5.3.2 Electronic Noises
137(1)
5.4 Noise Classification
138(4)
5.4.1 Additive and Multiplicative Noises
139(1)
5.4.2 Stiffness Modulation Noise
139(1)
5.4.3 Noise Classification Examples
140(2)
5.5 System Decomposition Model
142(7)
5.5.1 Time-domain Decomposition for Damped MEMS Resonator
142(3)
5.5.2 Frequency-domain Decomposition for Damped MEMS Resonator
145(1)
5.5.3 Modulation Matrix
146(1)
5.5.4 Decomposition of a Practical MEMS Oscillation System
146(2)
5.5.5 Phase Noise Modeling of Entire MEMS SOA Encompassing Nonlinearities
148(1)
5.6 Noise Estimation with System Decomposition Phase Noise Model
149(7)
5.7 Numerical Simulation
156(3)
5.7.1 Performance Prediction
157(2)
5.7.2 The Optimal MEMS Resonator Displacement Amplitude
159(1)
5.8 Summary
159(1)
References
160(3)
6 Resonant Seismic Sensor
163(96)
Xudong Zou
6.1 Introduction
163(1)
6.2 Sensor Design
164(28)
6.2.1 Sensor Topology
164(2)
6.2.2 Mechanical Structure Design
166(1)
6.2.3 Resonant Sensing Element
166(1)
6.2.3.1 Analytical model
166(4)
6.2.3.2 Scale factor optimization
170(2)
6.2.3.3 Nonlinearity of scale factor
172(3)
6.2.3.4 Conclusions
175(1)
6.2.4 Inertial Force Amplifier
175(1)
6.2.4.1 Micro-leverage mechanism
175(1)
6.2.4.2 Lever amplification factor
176(6)
6.2.4.3 Effective amplification factor
182(2)
6.2.4.4 Conclusion
184(1)
6.2.5 Proof Mass and Suspension Frame
185(1)
6.2.5.1 Proof-mass design
185(2)
6.2.5.2 Suspensions design
187(1)
6.2.6 Mechanical Structure Design Evaluation
188(4)
6.3 Electronic Circuitry Design
192(15)
6.3.1 Electro-mechanical Transducer Design For DETF Sensing Element
193(2)
6.3.2 Electro-mechanical Model of DETF Sensing Element
195(1)
6.3.2.1 Linear model of DETF sensing element
195(3)
6.3.2.2 Nonlinear model of DETF sensing element
198(6)
6.3.3 Design of Frequency Tracking Oscillator
204(2)
6.3.4 Conclusion
206(1)
6.4 Seismic Acceleration Resolution
207(23)
6.4.1 Frequency Noise Model
207(3)
6.4.1.1 PSD of phase/frequency noise
210(1)
6.4.1.2 Allan variance
211(2)
6.4.2 Factors Influencing Resolution
213(1)
6.4.2.1 Phase noise of the DETF sensing element
213(3)
6.4.2.2 Noise in semiconductor amplifiers
216(4)
6.4.2.3 Noise in the frequency tracking oscillator
220(4)
6.4.3 Estimation of Resonant Seismic Sensors' Resolution
224(1)
6.4.3.1 Mechanical-thermal noise limited resolution
224(3)
6.4.3.2 Electronic noise-limited resolution
227(3)
6.4.3.3 Combinative resolution estimation
230(1)
6.4.4 Conclusion
230(1)
6.5 Drift in Resonant Seismic Sensors
230(12)
6.5.1 Temperature Drift
231(1)
6.5.1.1 Temperature-dependent elasticity
231(3)
6.5.1.2 Thermal expansion and thermal stress
234(4)
6.5.1.3 Temperature-dependent DC bias voltage
238(1)
6.5.2 Pressure-Induced Drift
239(2)
6.5.3 Charge-Induced Drift
241(1)
6.6 Device Fabrication and Integration
242(11)
6.6.1 Micromachining Process
242(1)
6.6.2 Low Pressure Package
243(1)
6.6.3 Laboratory Calibration and Results
244(1)
6.6.3.1 Experimental setu
245(1)
6.6.4 Static Calibration
246(1)
6.6.4.1 Accelerometer scale factor
246(1)
6.6.4.2 Accelerometer resolution
247(4)
6.6.5 Dynamic Calibration
251(1)
6.6.6 Conclusion
252(1)
References
253(6)
Index 259(4)
About the Editor 263
Yong Ping Xu, National University of Singapore, Singapore.