Muutke küpsiste eelistusi

E-raamat: Modern Measurements - Fundamentals and Applications: Fundamentals and Applications [Wiley Online]

Edited by , Edited by , Edited by , Edited by
  • Formaat: 400 pages
  • Ilmumisaeg: 20-Nov-2015
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119021316
  • ISBN-13: 9781119021315
  • Wiley Online
  • Hind: 165,94 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 400 pages
  • Ilmumisaeg: 20-Nov-2015
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119021316
  • ISBN-13: 9781119021315

The science of measurement and instrumentation is a multidisciplinary study. This book covers a wide range of important topics including fundamental measurement theory, sampling, system identification/signal processing, analog-to-digital conversion, sensors, soft- and hardware aspects of instrumentation, non-destructive testing, electromagnetic compatibility, reliability, and usability. With practical applications and downloadable application examples, including MATLAB codes, it provides valuable information for electrical and systems engineers, EE students, and measurement professionals.

Preface xv
Acronyms xvii
I Fundamentals 1(262)
1 Measurement Models And Uncertainty
3(44)
Alessandro Ferrero
Dario Petri
1.1 Introduction
3(1)
1.2 Measurement and Metrology
4(1)
1.3 Measurement Along the Centuries
5(5)
1.3.1 Measurement in Ancient Greece
6(1)
1.3.2 Measurement in the Roman Empire
6(1)
1.3.3 Measurement in the Renaissance Period
7(1)
1.3.4 Measurement in the Modern Age
8(1)
1.3.5 Measurement Today
9(1)
1.4 Measurement Model
10(10)
1.4.1 A First Measurement Model
11(5)
1.4.2 A More Complex Measurement Model
16(3)
1.4.3 Final Remarks
19(1)
1.5 Uncertainty in Measurement
20(7)
1.5.1 The Origin of the Doubt
21(2)
1.5.2 The Different Effects on the Measurement Result
23(2)
1.5.3 The Final Effect
25(2)
1.6 Uncertainty Definition and Evaluation
27(12)
1.6.1 The Error Concept and Why it Should be Abandoned
28(1)
1.6.2 Uncertainty Definition: The GUM Approach
29(2)
1.6.3 Evaluating Standard Uncertainty
31(4)
1.6.4 The Combined Standard Uncertainty
35(4)
1.7 Conclusions
39(1)
Further Reading
40(1)
References
41(1)
Exercises
41(6)
2 The System Of Units And The Measurement Standards
47(40)
Franco Cabiati
2.1 Introduction
47(1)
2.2 Role of the Unit in the Measurement Process
48(2)
2.3 Ideal Structure of a Unit System
50(2)
2.4 Evolution of the Unit Definition
52(1)
2.5 The SI System of Units
53(6)
2.6 Perspectives of Future SI Evolution
59(3)
2.7 Realization of Units and Primary Standards
62(21)
2.7.1 Meter Realization and Length Standards
65(1)
2.7.2 Kilogram Realization and Mass Standards: Present Situation
66(1)
2.7.3 Kilogram Realization: Future Perspective
67(2)
2.7.4 Realization of the Second and Time Standards
69(2)
2.7.5 Electrical Unit Realizations and Standards: Present Situation
71(5)
2.7.6 Electrical Units Realization and Standards: Future Perspective
76(2)
2.7.7 Kelvin Realization and Temperature Standards: Present Situation
78(1)
2.7.8 Kelvin Realization and Temperature Standards: Future Perspective
79(1)
2.7.9 Mole Realization: Present Situation
80(1)
2.7.10 Mole Realization: Future Perspective
81(1)
2.7.11 Candela Realization and Photometric Standards
82(1)
2.8 Conclusions
83(1)
Further Reading
83(1)
References
84(1)
Exercises
84(3)
3 Digital Signal Processing In Measurement
87(38)
Alessandro Ferrero
Claudio Narduzzi
3.1 Introduction
87(1)
3.2 Sampling Theory
88(8)
3.2.1 Sampling and Fourier Analysis
89(3)
3.2.2 Band-Limited Signals
92(3)
3.2.3 Interpolation
95(1)
3.3 Measurement Algorithms for Periodic Signals
96(6)
3.3.1 Sampling Periodic Signals
97(2)
3.3.2 Estimation of the RMS Value
99(3)
3.4 Digital Filters
102(4)
3.5 Measuring Multi-Frequency Signals
106(13)
3.5.1 Finite-Length Sequences
107(4)
3.5.2 Discrete Fourier Transform
111(2)
3.5.3 Uniform Window
113(1)
3.5.4 Spectral Leakage
114(2)
3.5.5 Leakage Reduction by the Use of Windows
116(3)
3.6 Statistical Measurement Algorithms
119(1)
3.7 Conclusions
120(1)
Further Reading
121(1)
References
122(1)
Exercises
122(3)
4 Ad And Da Conversion
125(24)
Niclas Bjorsell
4.1 Introduction
125(1)
4.2 Sampling
125(8)
4.2.1 Quantization
126(3)
4.2.2 Sampling Theorem
129(1)
4.2.3 Signal Reconstruction
130(3)
4.2.4 Anti-Alias Filter
133(1)
4.3 Analog-to-Digital Converters
133(2)
4.3.1 Flash ADCs
133(1)
4.3.2 Pipelined ADCs
134(1)
4.3.3 Integrating ADCs
134(1)
4.3.4 Successive Approximation Register ADCs
135(1)
4.4 Critical ADC Parameters
135(4)
4.4.1 Gain and Offset
136(1)
4.4.2 Integral and Differential Non-linearity
137(2)
4.4.3 Total Harmonic Distortion and Spurious-Free Dynamic Range
139(1)
4.4.4 Effective Number of Bits
139(1)
4.5 Sampling Techniques
139(5)
4.5.1 Oversampling
139(1)
4.5.2 Sigma-Delta, EA
140(1)
4.5.3 Dither
141(1)
4.5.4 Time-Interleaved
142(1)
4.5.5 Undersampling
142(1)
4.5.6 Harmonic Sampling
143(1)
4.5.7 Equivalent-Time Sampling
143(1)
4.5.8 Model-Based Post-correction
144(1)
4.6 DAC
144(2)
4.6.1 Binary-Weighted
144(1)
4.6.2 Kelvin Divider
145(1)
4.6.3 Segmented
145(1)
4.6.4 R-2R
145(1)
4.6.5 PWM DAC
145(1)
4.7 Conclusions
146(1)
Further Reading
146(1)
References
146(1)
Exercises
147(2)
5 Basic Instruments: Multimeters
149(26)
Daniel Slomovitz
5.1 Introduction
149(1)
5.2 History
150(3)
5.3 Main Characteristics
153(18)
5.3.1 Ranges
153(2)
5.3.2 Number of Digits and Resolution
155(3)
5.3.3 Accuracy
158(1)
5.3.4 Loading Effects
159(1)
5.3.5 Guard
160(1)
5.3.6 Four Terminals
161(1)
5.3.7 Accessories
162(2)
5.3.8 AC Measurements
164(3)
5.3.9 Safety
167(3)
5.3.10 Calibration
170(1)
5.3.11 Selection
171(1)
5.4 Conclusions
171(1)
Further Reading
172(1)
References
172(1)
Exercises
173(2)
6 Basic Instruments: Oscilloscopes
175(28)
Jorge Fernandez Daher
6.1 Introduction
175(1)
6.2 Types of Waveforms
176(1)
6.2.1 Sinewave
176(1)
6.2.2 Square or Rectangular Wave
176(1)
6.2.3 Triangular or Sawtooth Wave
176(1)
6.2.4 Pulses
177(1)
6.3 Waveform Measurements
177(1)
6.3.1 Amplitude
177(1)
6.3.2 Phase Shift
177(1)
6.3.3 Period and Frequency
177(1)
6.4 Types of Oscilloscopes
177(4)
6.5 Oscilloscope Controls
181(7)
6.5.1 Vertical Controls
183(1)
6.5.2 Horizontal Controls
184(1)
6.5.3 Trigger System
185(2)
6.5.4 Display System
187(1)
6.6 Measurements
188(3)
6.6.1 Peak-to-Peak Voltage
188(1)
6.6.2 RMS Voltage
188(1)
6.6.3 Rise Time
188(1)
6.6.4 Fall Time
188(1)
6.6.5 Pulse Width
188(2)
6.6.6 Period
190(1)
6.6.7 Frequency
190(1)
6.6.8 Phase Shift Measurements
190(1)
6.6.9 Mathematical Functions
190(1)
6.7 Performance Characteristics
191(4)
6.7.1 Bandwidth
191(1)
6.7.2 Rise Time
191(2)
6.7.3 Channels
193(1)
6.7.4 Vertical Resolution
193(1)
6.7.5 Gain Accuracy
193(1)
6.7.6 Horizontal Accuracy
193(1)
6.7.7 Record Length
193(1)
6.7.8 Update Rate
194(1)
6.7.9 Connectivity
195(1)
6.8 Oscilloscope Probes
195(4)
6.8.1 Passive Probes
196(1)
6.8.2 Active Probes
197(2)
6.9 Using the Oscilloscope
199(1)
6.9.1 Grounding
199(1)
6.9.2 Calibration
199(1)
6.10 Conclusions
199(1)
Further Reading
200(1)
References
200(1)
Exercises
201(2)
7 Fundamentals Of Hard And Soft Measurement
203(60)
Luca Mari
Paolo Carbone
Dario Petri
7.1 Introduction
203(20)
7.2 A Characterization of Measurement
206(1)
7.2.1 Measurement as Value Assignment
206(3)
7.2.2 Measurement as Process Performed by a Metrological System
209(1)
7.2.3 Measurement as Process Conveying Quantitative Information
209(1)
7.2.4 Measurement as Morphic Mapping
210(3)
7.2.5 Measurement as Mapping on a Given Reference Scale
213(2)
7.2.6 Measurement as Process Conveying Objective and Inter-Subjective Information
215(1)
7.2.7 The Operative Structure of Measurement
216(3)
7.2.8 A Possible Definition of "Measurement"
219(1)
7.2.9 Hard Measurements and Soft Measurements
220(2)
7.2.10 Multidimensional Properties
222(1)
7.3 A Conceptual Framework of the Structure of Measurement
223(23)
7.3.1 Goal Setting
225(3)
7.3.2 Modeling
228(13)
7.3.3 Design
241(2)
7.3.4 Execution: Setup, Data Acquisition, Information Extraction and Reporting
243(2)
7.3.5 Interpretation
245(1)
7.4 An Application of the Measurement Structure Framework: Assessing Versus Measuring Research Quality
246(10)
7.4.1 Motivations for Research Quality Measurement
246(1)
7.4.2 Measurement Goal Definition
247(3)
7.4.3 Modeling
250(2)
7.4.4 Design
252(2)
7.4.5 Execution
254(1)
7.4.6 Interpretation
255(1)
7.5 Conclusions
256(1)
Further Reading
257(1)
References
257(3)
Exercises
260(3)
II Applications 263(90)
8 System Identification
265(22)
Gerd Vandersteen
8.1 Introduction
265(1)
8.2 A First Example: The Resistive Divider
265(2)
8.3 A First Trial of Estimators
267(1)
8.4 From Trial-and-Error to a General Framework
268(9)
8.4.1 Setting up the Estimator
269(1)
8.4.2 Uncertainty on the Estimates
270(1)
8.4.3 Model Validation
271(3)
8.4.4 Extracting the Noise Model
274(3)
8.5 Practical Identification Framework for Instrumentation and Measurements
277(5)
8.5.1 Dynamic Linear Time-Invariant (LTI) Systems
277(3)
8.5.2 From Linear to Nonlinear Systems
280(1)
8.5.3 Sine Fitting
280(2)
8.5.4 Calibration and Compensation Techniques
282(1)
8.6 Conclusions
282(1)
Further Reading
283(1)
References
283(2)
Exercises
285(2)
9 Reliability Measurements
287(30)
Marcantonio Catelani
9.1 Introduction
287(1)
9.2 Brief Remarks on the Concept of Quality
288(1)
9.3 Reliability, Failure and Fault: Basic Concepts and Definitions
288(4)
9.4 Reliability Theory
292(11)
9.4.1 Reliability Models and Measures Related to Time to Failure
292(6)
9.4.2 Life Distributions
298(2)
9.4.3 Reliability Parameters
300(2)
9.4.4 The Bath-Tube Curve
302(1)
9.5 System Reliability Assessment
303(7)
9.5.1 Series Configuration
304(1)
9.5.2 Parallel Configuration
305(2)
9.5.3 k-out-of-n Configuration
307(3)
9.6 Analysis Techniques for Dependability
310(3)
9.6.1 Failure Modes and Effect Analysis
311(1)
9.6.2 Fault Tree Analysis
312(1)
9.7 Conclusions
313(1)
Further Reading
314(1)
References
314(1)
Exercises
315(2)
10 EMC Measurements
317(36)
Carlo Carobbi
10.1 Introduction
317(1)
10.2 Definitions and Terminology
318(3)
10.3 The Measuring Receiver
321(8)
10.3.1 Quasi-Peak Measuring Receivers
321(8)
10.3.2 Peak Measuring Receivers
329(1)
10.4 Conducted Emission Measurements
329(4)
10.4.1 The Artificial Mains Network
329(3)
10.4.2 The Current Probe
332(1)
10.5 Radiated Emission Measurements
333(10)
10.5.1 Antennas for the 9 kHz to 30 MHz Frequency Range
334(1)
10.5.2 Antennas for the Frequency Range Above 30 MHz
335(4)
10.5.3 Measurement Sites
339(4)
10.6 Immunity Tests
343(4)
10.6.1 Conducted Immunity Tests
343(3)
10.6.2 Radiated Immunity Tests
346(1)
10.7 Conclusions
347(1)
Further Reading
348(1)
References
348(3)
Exercises
351(2)
Problem Solutions 353(18)
Index 371
Alessandro Ferrero is a Professor at the Polytechnic University of Milan. He is a Fellow of the IEEE.

Dario Petri is a Professor at the University of Trento. He is a Fellow of the IEEE.

Paolo Carbone is a Professor at the University of Perugia. He is a Fellow of the IEEE and editor-in-chief of the international journal, ACTA IMEKO.

Marcantonio Catelani is a Professor at the University of Florence. He is a member of the IEEE and Chair of IMEKO TC10 Technical diagnostics.