Muutke küpsiste eelistusi

E-raamat: Modern Methods of Crystal Structure Prediction [Wiley Online]

Edited by (State University of New York, Stony Brook)
  • Formaat: 274 pages
  • Ilmumisaeg: 24-Nov-2010
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527632832
  • ISBN-13: 9783527632831
Teised raamatud teemal:
  • Wiley Online
  • Hind: 195,60 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 274 pages
  • Ilmumisaeg: 24-Nov-2010
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527632832
  • ISBN-13: 9783527632831
Teised raamatud teemal:
Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors.
A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.
List of Contributors
ix
Introduction: Crystal Structure Prediction, a Formidable Problem xi
1 Periodic-Graph Approaches in Crystal Structure Prediction
1(28)
Vladislav A. Blatov
Davide M. Proserpio
1.1 Introduction
1(1)
1.2 Terminology
2(3)
1.3 The Types of Periodic Nets Important for Crystal Structure Prediction
5(2)
1.4 The Concept of Topological Crystal Structure Representation
7(3)
1.5 Computer Tools and Databases
10(2)
1.6 Current Results on Nets Abundance
12(2)
1.7 Some Properties of Nets Influencing the Crystal Structure
14(11)
1.7.1 Symmetry of Nets and Embeddings
14(3)
1.7.2 Relations Between Nets
17(1)
1.7.3 Role of Geometrical and Coordination Parameters
18(7)
1.8 Outlook
25(4)
References
26(3)
2 Energy Landscapes and Structure Prediction Using Basin-Hopping
29(26)
David J. Wales
2.1 Introduction
29(1)
2.2 Visualizing the Landscape
30(6)
2.3 Basin-Hopping Global Optimization
36(6)
2.4 Energy Landscapes for Crystals and Glasses
42(13)
References
46(9)
3 Random Search Methods
55(12)
William W. Tipton
Richard G. Hennig
3.1 Introduction
55(2)
3.2 History and Overview
57(1)
3.3 Methods
58(3)
3.4 Applications and Results
61(3)
3.5 Summary and Conclusions
64(3)
References
65(2)
4 Predicting Solid Compounds Using Simulated Annealing
67(40)
J. Christian Schon
Martin Jansen
4.1 Introduction
67(1)
4.2 Locally Ergodic Regions on the Energy Landscape of Chemical Systems
68(3)
4.3 Simulated Annealing and Related Stochastic Walker-Based Algorithms
71(8)
4.3.1 Basic Simulated Annealing
71(3)
4.3.2 Adjustable Features in Simulated Annealing
74(1)
4.3.2.1 Choice of Moveclass
74(2)
4.3.2.2 Temperature Schedule and Acceptance Criterion
76(1)
4.3.2.3 Extensions and Generalizations of Simulated Annealing
77(2)
4.4 Examples
79(17)
4.4.1 Structure Prediction
80(1)
4.4.1.1 Alkali Metal Halides
80(1)
4.4.1.2 Na3N
81(1)
4.4.1.3 Mg(BH4)2
82(1)
4.4.1.4 Elusive Alkali Metal Orthocarbonates Balancing M4(CO4) and M2O + M2(CO3), with M = Li, Na, K, Rb, Cs
83(1)
4.4.1.5 Alkali Metal Sulfides M2S (M = Li, Na, K, Rb, Cs)
83(1)
4.4.1.6 Boron Nitride
84(1)
4.4.1.7 Structure Prediction of SrO as Function of Temperature and Pressure
84(2)
4.4.1.8 Phase Diagrams of the Quasi-Binary Mixed Alkali Halides
86(1)
4.4.2 Structure Prediction Employing Structural Restrictions
87(1)
4.4.2.1 Complex Ions as Primary Building Units
87(1)
4.4.2.2 Molecular Crystals
88(3)
4.4.2.3 Zeolites
91(1)
4.4.2.4 Phase Diagrams Restricted to Prescribed Sublattices
92(2)
4.4.3 Structure Determination
94(1)
4.4.3.1 Structure Determination using Experimental Cell Information
94(1)
4.4.3.2 Reverse Monte Carlo Method and Pareto Optimization
94(2)
4.5 Evaluation and Outlook
96(11)
4.5.1 State-of-the-Art
96(1)
4.5.2 Future
97(1)
References
98(9)
5 Simulation of Structural Phase Transitions in Crystals: The Metadynamics Approach
107(24)
Roman Martonak
5.1 Introduction
107(1)
5.2 Simulation of Structural Transformations
108(2)
5.3 The Metadynamics-Based Algorithm
110(3)
5.4 Practical Aspects
113(2)
5.5 Examples of Applications
115(10)
5.6 Conclusions and Outlook
125(6)
Acknowledgments
126(1)
References
127(4)
6 Global Optimization with the Minima Hopping Method
131(16)
Stefan Goedecker
6.1 Posing the Problem
131(3)
6.2 The Minima Hopping Algorithm
134(8)
6.3 Applications of the Minima Hopping Method
142(1)
6.4 Conclusions
143(4)
References
144(3)
7 Crystal Structure Prediction Using Evolutionary Approach
147(34)
Andriy O. Lyakhov
Artem R. Oganov
Mario Valle
7.1 Theory
148(16)
7.1.1 Search Space, Population, and Fitness Function
150(1)
7.1.2 Representation
150(1)
7.1.3 Local Optimization and Constrains
151(1)
7.1.4 Initialization of the First Generation
152(3)
7.1.5 Variation Operators
155(2)
7.1.6 Survival of the Fittest and Selection of Parents
157(1)
7.1.7 Halting Criteria
158(1)
7.1.8 Premature Convergence and How to Prevent It: Fingerprint Function
159(2)
7.1.9 Improved Selection Rules and Heredity Operator
161(1)
7.1.10 Extension to Molecular Crystals
162(1)
7.1.11 Adaptation to Clusters
162(1)
7.1.12 Extension to Variable Compositions: Toward Simultaneous Prediction of Stoichiometry and Structure
163(1)
7.2 A Few Illustrations of the Method
164(12)
7.2.1 Elements
165(1)
7.2.1.1 Boron: Novel Phase with a Partially Ionic Character
165(2)
7.2.1.2 Sodium: A Metal that Goes Transparent under Pressure
167(3)
7.2.1.3 Superconducting ξ-Oxygen
170(1)
7.2.1.4 Briefly on Some of the (Many) Interesting Carbon Structures
171(1)
7.2.2 Compounds and Minerals
172(1)
7.2.2.1 Insulators by Metal Alloying?
172(1)
7.2.2.2 MgB2: Analogy with Carbon and Loss of Superconductivity under Pressure
172(1)
7.2.2.3 Hydrogen-Rich Hydrides under Pressure, and Their Superconductivity
173(2)
7.2.2.4 High-Pressure Polymorphs of CaCO3
175(1)
7.3 Conclusions
176(5)
Acknowledgments 177(1)
References 177(46)
8 Pathways of Structural Transformations in Reconstructive Phase Transitions: Insights from Transition Path Sampling Molecular Dynamics
181(42)
Stefano Leoni
Salah Eddine Boulfelfel
8.1 Introduction
181(2)
8.1.1 Shape of the Nuclei
182(1)
8.2 Transition Path Sampling Molecular Dynamics
183(3)
8.2.1 First Trajectory
183(1)
8.2.2 Trajectory Shooting and Shifting
184(2)
8.3 The Lesson of Sodium Chloride
186(8)
8.3.1 Simulation Strategy
187(1)
8.3.2 Topological Models
187(3)
8.3.3 Combining Modeling and Molecular Dynamics Simulations
190(1)
8.3.4 The Mechanism of the B1-B2 Phase Transition
191(2)
8.3.5 Crossing the Line: NaBr
193(1)
8.4 The Formation of Domains
194(3)
8.5 Structure of the B2-B1 Interfaces
197(7)
8.5.1 Domain Formation in RbCI
199(2)
8.5.2 Liquid Interfaces in CaF2
201(3)
8.6 Domain Fragmentation in CdSe Under Pressure
204(6)
8.6.1 B4-B1-B4 Transformation
206(3)
8.6.2 Defects
209(1)
8.6.3 The Lesson of CdSe
209(1)
8.7 Intermediate Structures During Phase Transitions
210(7)
8.7.1 Intermediates Along the Pressure-Induced Transformation of GaN
211(3)
8.7.2 Polymorphism and Transformations of ZnO: Tetragonal or Hexagonal Intermediate?
214(3)
8.8 Conclusions
217(6)
References
218(5)
Appendix: First Blind Test of Inorganic Crystal Structure Prediction Methods 223(10)
Color Plates 233(12)
Index 245
Artem R. Oganov is a Full Professor at the Department of Geosciences and Physics and Astronomy of State University of New York at Stony Brook, USA. Professor Oganov has authored over 80 scientific publications. He holds several awards, including the University Latsis Prize, and awards from the European High-Pressure Research Group, the European Union of Geosciences, and the Geological Society of London, and invited professorships in Italy, France, Hong Kong, China and Russia.