Nomenclature |
|
xiii | |
Foreword |
|
xix | |
About the Authors |
|
xxi | |
Acknowledgments |
|
xxiii | |
|
|
1 | (24) |
|
1.1 Industrial Applications |
|
|
3 | (7) |
|
|
3 | (2) |
|
1.1.2 Materials Transport Systems |
|
|
5 | (1) |
|
1.1.2.1 Pneumatic Transport |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.1.4 Manufacturing and Material Processing |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.1.4.2 Plasma Spray Coating |
|
|
8 | (1) |
|
1.1.4.3 Abrasive Water-Jet Cutting |
|
|
8 | (1) |
|
1.1.4.4 Synthesis of Nanophase Materials |
|
|
9 | (1) |
|
1.2 Energy Conversion and Propulsion |
|
|
10 | (2) |
|
1.2.1 Pulverized-Coal-Fired Furnaces |
|
|
10 | (1) |
|
|
10 | (2) |
|
1.2.3 Solid Propellant Rockets |
|
|
12 | (1) |
|
1.3 Environmental Applications |
|
|
12 | (5) |
|
|
12 | (1) |
|
1.3.1.1 Cyclone Separators |
|
|
12 | (2) |
|
1.3.1.2 Electrostatic Precipitators |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.3.2 Fire Suppression and Control |
|
|
16 | (1) |
|
1.4 Bio-Medical Applications |
|
|
17 | (4) |
|
1.4.1 Dry Powder Inhalers |
|
|
17 | (3) |
|
|
20 | (1) |
|
1.5 Summary and Objectives of This Book |
|
|
21 | (4) |
|
|
22 | (3) |
|
Chapter 2 Properties of Dispersed Phase Flows |
|
|
25 | (28) |
|
2.1 The Continuum Hypothesis |
|
|
25 | (3) |
|
2.2 Density and Volume Fraction of Dispersed Flows |
|
|
28 | (3) |
|
2.3 Inter-Particle Distance--Dilute and Dense Flows |
|
|
31 | (2) |
|
2.4 Response Times, the Stokes Number, Collisions |
|
|
33 | (6) |
|
|
35 | (1) |
|
2.4.2 Dilute Flows and Dense Flows |
|
|
36 | (3) |
|
2.5 Thermodynamic and Transport Properties |
|
|
39 | (4) |
|
2.6 Phase Interactions--Coupling |
|
|
43 | (10) |
|
|
45 | (1) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (3) |
|
Chapter 3 Distributions and Statistics of Particles and Droplets |
|
|
53 | (26) |
|
3.1 The "Size" of Particles |
|
|
53 | (4) |
|
|
55 | (2) |
|
3.2 Discrete Size Distributions |
|
|
57 | (3) |
|
3.2.1 Frequency Distribution |
|
|
57 | (2) |
|
3.2.2 Cumulative Distribution |
|
|
59 | (1) |
|
3.3 Continuous Size Distributions |
|
|
60 | (1) |
|
3.4 Statistical Parameters |
|
|
61 | (3) |
|
3.4.1 Mode, Mean, and Median |
|
|
62 | (2) |
|
3.4.2 Variance and Standard Deviation |
|
|
64 | (1) |
|
3.5 Analytical Size Distributions |
|
|
64 | (15) |
|
3.5.1 Log-Normal Distribution |
|
|
64 | (4) |
|
3.5.2 Upper-Limit Log-Normal Distribution |
|
|
68 | (1) |
|
3.5.3 Square-Root Normal Distribution |
|
|
68 | (1) |
|
3.5.4 Rosin-Rammler Distribution |
|
|
69 | (1) |
|
3.5.5 Nukiyama-Tanasawa Distribution |
|
|
70 | (1) |
|
3.5.6 Log-Hyperbolic Distribution |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (6) |
|
Chapter 4 Forces on Single Particles and Drops |
|
|
79 | (48) |
|
4.1 Steady Drag on Spherical Particles and Drops |
|
|
79 | (11) |
|
4.1.1 Drag at Very Small Reynolds Numbers--Creeping or Stokes Flow |
|
|
80 | (2) |
|
4.1.2 Steady Drag on Spherical at Finite Reynolds Numbers |
|
|
82 | (1) |
|
4.1.2.1 The Flow Field Around the Solid Sphere |
|
|
82 | (2) |
|
4.1.2.2 Steady Drag on Solid Spheres |
|
|
84 | (1) |
|
4.1.2.3 Steady Drag on Liquid Spheres |
|
|
85 | (3) |
|
|
88 | (1) |
|
4.1.3 Steady Drag with Velocity Slip at the Interface |
|
|
88 | (2) |
|
4.2 Compressibility and Rarefaction Effects |
|
|
90 | (4) |
|
4.2.1 The Cunningham Correction Factor |
|
|
92 | (1) |
|
4.2.2 Effects of the Mach Number |
|
|
93 | (1) |
|
4.3 Non-Spherical Particles |
|
|
94 | (4) |
|
4.3.1 Particles of Regular Shapes |
|
|
94 | (1) |
|
4.3.2 Particles with Irregular Shapes |
|
|
95 | (2) |
|
4.3.3 The Stokes or Hydrodynamic Diameter |
|
|
97 | (1) |
|
4.4 Effects of Flow Turbulence |
|
|
98 | (1) |
|
|
98 | (2) |
|
4.6 Transverse (Lift) Forces Due to Particle Rotation and Flow Shear |
|
|
100 | (3) |
|
|
100 | (1) |
|
|
101 | (2) |
|
4.7 Effects of Solid Boundaries |
|
|
103 | (3) |
|
4.7.1 Effect of Enclosures |
|
|
103 | (1) |
|
4.7.2 Effect of Solid Boundaries |
|
|
104 | (2) |
|
|
106 | (3) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (3) |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
112 | (4) |
|
4.10.1 Brownian Diffusion |
|
|
112 | (2) |
|
|
114 | (2) |
|
4.11 Transient Drag-Added Mass and History (Basset) Force |
|
|
116 | (3) |
|
4.11.1 Creeping (Stokes) Flow (Rer >> 1) |
|
|
116 | (2) |
|
4.11.2 Flow at Finite Reynolds Numbers |
|
|
118 | (1) |
|
|
119 | (8) |
|
|
119 | (5) |
|
|
124 | (3) |
|
Chapter 5 Particle-Fluid Interactions |
|
|
127 | (36) |
|
5.1 Fundamental Multiphase Flow Equations |
|
|
127 | (2) |
|
5.1.1 Mass Conservation Equation |
|
|
128 | (1) |
|
5.1.2 Linear Momentum Equation for the i-th Phase |
|
|
128 | (1) |
|
5.1.3 Angular Momentum Equation |
|
|
128 | (1) |
|
|
128 | (1) |
|
5.1.5 The Entropy Inequality |
|
|
129 | (1) |
|
5.1.6 Generalized Form of the Fundamental Equations |
|
|
129 | (1) |
|
5.2 Applications in Evaporation and Combustion--Mass Coupling |
|
|
129 | (7) |
|
5.2.1 Evaporation or Condensation |
|
|
130 | (2) |
|
|
132 | (1) |
|
5.2.3 Mass Transfer from Slurry Droplets |
|
|
132 | (2) |
|
|
134 | (2) |
|
5.3 Linear Momentum Interactions |
|
|
136 | (1) |
|
5.3.1 Momentum Interactions with Groups of Particles |
|
|
137 | (1) |
|
5.4 Angular Momentum Interactions |
|
|
137 | (3) |
|
|
139 | (1) |
|
5.5 Energy Interactions--Heat Transfer |
|
|
140 | (12) |
|
5.5.1 Heat-Mass Transfer Similarity |
|
|
140 | (1) |
|
5.5.2 Steady Heat Transfer from Spheres |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
5.5.2.4 Velocity Slip and Temperature Difference (Temperature Slip) |
|
|
144 | (1) |
|
|
145 | (1) |
|
5.5.2.6 Effects of Rotation |
|
|
145 | (1) |
|
5.5.2.7 Effects of Flow Turbulence |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
5.5.5 Transient Heat Transfer |
|
|
149 | (2) |
|
5.5.6 Energy Interactions with Groups of Particles |
|
|
151 | (1) |
|
5.6 Turbulence Modulation by Particles |
|
|
152 | (11) |
|
5.6.1 Experimental Studies |
|
|
152 | (2) |
|
5.6.2 Turbulence Modulation Models |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (6) |
|
Chapter 6 Particle-Particle Interactions |
|
|
163 | (42) |
|
6.1 Binary Hard-Sphere Particle Collisions |
|
|
164 | (11) |
|
6.1.1 Binary Collision Detection |
|
|
164 | (3) |
|
|
167 | (3) |
|
6.1.3 Particle Velocity Change |
|
|
170 | (3) |
|
6.1.4 Physical Effects of Inter-Particle Collisions |
|
|
173 | (2) |
|
6.2 Soft-Sphere Particle Collision/Contact |
|
|
175 | (11) |
|
6.2.1 Elastic Deformation |
|
|
176 | (2) |
|
6.2.2 Dissipation in the Normal Direction |
|
|
178 | (1) |
|
|
179 | (3) |
|
|
182 | (1) |
|
6.2.5 Dissipation in the Tangential Direction |
|
|
182 | (1) |
|
6.2.6 Particle Coordinate Reference Frame |
|
|
183 | (2) |
|
6.2.7 Integration of the Equations of Motion |
|
|
185 | (1) |
|
6.3 Agglomeration and Flocculation Modelling |
|
|
186 | (19) |
|
6.3.1 Characteristics of Agglomerates |
|
|
188 | (4) |
|
6.3.2 Models of the Agglomeration Process |
|
|
192 | (7) |
|
|
199 | (6) |
|
Chapter 7 Particle-Wall Interactions |
|
|
205 | (34) |
|
7.1 Momentum and Energy Exchanges |
|
|
206 | (5) |
|
7.2 Wall Roughness Effects and Irregular Bouncing |
|
|
211 | (8) |
|
7.2.1 Modelling Approaches for Irregular Bouncing |
|
|
212 | (2) |
|
7.2.2 Wall Roughness Normal PDF Model |
|
|
214 | (5) |
|
7.3 Particle Deposition and Wall Adhesion |
|
|
219 | (5) |
|
7.4 Wall Erosion by Particle Impact |
|
|
224 | (15) |
|
|
227 | (1) |
|
7.4.2 The Neilson and Gilchrist Model |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
7.4.5 The Oka et al. Model |
|
|
229 | (5) |
|
|
234 | (5) |
|
Chapter 8 Numerical Methods and Modelling Approaches |
|
|
239 | (100) |
|
8.1 Summary of Numerical Methods for Single-Phase Flows |
|
|
239 | (1) |
|
8.2 Hierarchy of Numerical Methods for Multiphase Flows |
|
|
240 | (5) |
|
8.3 Particle-Scale Simulation Methods |
|
|
245 | (22) |
|
8.3.1 Summary Resolved Rigid Particles |
|
|
245 | (3) |
|
8.3.2 Lattice-Boltzmann Method |
|
|
248 | (3) |
|
8.3.2.1 Treatment of Solid-Fluid Boundaries |
|
|
251 | (2) |
|
8.3.2.2 Description of the Particle Motion |
|
|
253 | (2) |
|
8.3.2.3 Moving Solid-Fluid Boundaries |
|
|
255 | (1) |
|
8.3.2.4 Solid Boundaries in Close Contact |
|
|
256 | (1) |
|
8.3.2.5 Examples of LBM Applications |
|
|
257 | (5) |
|
8.3.3 Immersed Boundary Methods |
|
|
262 | (1) |
|
8.3.3.1 Fundamentals of the Immersed Boundary Methods |
|
|
262 | (4) |
|
8.3.3.2 Applications of the Immersed Boundary Methods |
|
|
266 | (1) |
|
|
267 | (11) |
|
8.4.1 Examples of Point-Particle DNS |
|
|
270 | (8) |
|
|
278 | (5) |
|
8.5.1 Examples of a Point-Particle LES |
|
|
281 | (2) |
|
8.6 Euler/Euler or Multi-Fluid Approach |
|
|
283 | (11) |
|
8.6.1 Volume Averaging Over an Indicator Function |
|
|
283 | (2) |
|
8.6.2 Averaging Over an Ensemble of Particles |
|
|
285 | (3) |
|
8.6.3 Probability Density Function |
|
|
288 | (1) |
|
8.6.4 The Boltzmann Equation |
|
|
289 | (1) |
|
8.6.5 The Eulerian-Eulerian Governing Equations |
|
|
290 | (2) |
|
|
292 | (2) |
|
8.7 Hybrid Euler-Lagrange Approaches |
|
|
294 | (22) |
|
8.7.1 RANS Continuous-Phase Equations |
|
|
296 | (2) |
|
8.7.2 Particle Tracking Concepts |
|
|
298 | (2) |
|
8.7.3 Generation of Fluid Turbulent Velocities |
|
|
300 | (3) |
|
8.7.4 Point-Mass Coupling Approaches |
|
|
303 | (4) |
|
8.7.5 Mesh Size Requirements in Two-Way Coupled Euler-Lagrange Simulations |
|
|
307 | (4) |
|
8.7.6 Example Euler-Lagrange Simulations: Pneumatic Conveying |
|
|
311 | (5) |
|
8.8 Applications of Numerical Methods to Fluidized Bed Reactors |
|
|
316 | (23) |
|
8.8.1 Eulerian-Eulerian Prediction of Fluidized Beds |
|
|
318 | (1) |
|
|
318 | (1) |
|
Solving the Eulerian-Eulerian Equations |
|
|
319 | (1) |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
320 | (2) |
|
Results: Slugging Fluidized Beds |
|
|
322 | (1) |
|
Results: Bubbling Fluidized Beds |
|
|
322 | (1) |
|
Results: Bubble Injection |
|
|
322 | (1) |
|
8.8.2 Eulerian-Lagrangian Predictions for Fluidized Beds |
|
|
322 | (3) |
|
|
325 | (1) |
|
8.8.3 Example of Simulations |
|
|
326 | (1) |
|
|
327 | (12) |
|
Chapter 9 Experimental Methods |
|
|
339 | (92) |
|
9.1 Light Scattering Fundamentals |
|
|
343 | (7) |
|
9.2 Sampling and Offline Methods |
|
|
350 | (14) |
|
9.2.1 Imaging Methods, Microscopy |
|
|
351 | (1) |
|
|
352 | (4) |
|
9.2.3 Sedimentation Methods |
|
|
356 | (1) |
|
|
356 | (3) |
|
9.2.5 Electric Sensing Zone Method (Coulter principle) |
|
|
359 | (2) |
|
9.2.6 Laser-Diffraction Method |
|
|
361 | (3) |
|
9.3 Online Integral Methods |
|
|
364 | (5) |
|
|
364 | (2) |
|
9.3.2 Cross-Correlation Method |
|
|
366 | (3) |
|
9.4 Local Measurement Techniques |
|
|
369 | (39) |
|
9.4.1 Isokinetic Sampling |
|
|
369 | (4) |
|
9.4.2 Optical Fiber Probes |
|
|
373 | (2) |
|
9.4.3 Light Scattering Instruments |
|
|
375 | (4) |
|
9.4.4 Laser-Doppler Anemometry |
|
|
379 | (12) |
|
9.4.5 Phase-Doppler Anemometry |
|
|
391 | (17) |
|
9.5 Imaging Techniques and PTV/PIV |
|
|
408 | (12) |
|
|
420 | (11) |
|
|
422 | (1) |
|
|
422 | (5) |
|
|
427 | (4) |
|
Chapter 10 Nanoparticles and Nanofluids |
|
|
431 | (15) |
|
10.1 Characteristics of Nanoparticles and Nanoflu ids |
|
|
431 | (1) |
|
10.2 Effective Transport Properties of Nanofluids |
|
|
432 | (1) |
|
|
433 | (2) |
|
10.3.1 Experimental Data and Correlations |
|
|
433 | (1) |
|
10.3.2 Non-Newtonian Behavior |
|
|
434 | (1) |
|
10.4 Effective Thermal Conductivity |
|
|
435 | (3) |
|
10.4.1 Experimental Studies |
|
|
435 | (2) |
|
10.4.2 Analytical Expressions |
|
|
437 | (1) |
|
10.4.3 Mechanisms of Thermal Conductivity Enhancement |
|
|
437 | (1) |
|
|
438 | (2) |
|
|
440 | (1) |
|
|
441 | (2) |
|
|
441 | (1) |
|
10.7.2 Convective Boiling |
|
|
442 | (1) |
|
10.7.3 Critical Heat Flux |
|
|
443 | (1) |
|
10.8 Effective Diffusivity and Mass Transfer |
|
|
443 | (2) |
|
10.8.1 Analytical Results |
|
|
444 | (1) |
|
10.8.2 Experimental Methods and Results |
|
|
444 | (1) |
|
10.9 Specific Heat Capacity |
|
|
445 | (1) |
|
|
446 | (1) |
References |
|
446 | (5) |
Index |
|
451 | |