Muutke küpsiste eelistusi

E-raamat: Multiplier-Cum-Divider Circuits: Principles, Design, and Applications [Taylor & Francis e-raamat]

(Indian Institute of Technology Madras, India)
  • Formaat: 216 pages, 1 Tables, black and white; 164 Line drawings, black and white; 164 Illustrations, black and white
  • Ilmumisaeg: 13-Jul-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003168515
  • Taylor & Francis e-raamat
  • Hind: 193,88 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 276,97 €
  • Säästad 30%
  • Formaat: 216 pages, 1 Tables, black and white; 164 Line drawings, black and white; 164 Illustrations, black and white
  • Ilmumisaeg: 13-Jul-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003168515
This reference text discusses principles, design, and applications of various types of multiplier-cum-divider circuits (MCDs), and covers applications of operational amplifiers to perform as MCDs circuits The text covers principles of multiplying circuits, dividing circuits, square rooting, and vector magnitude circuits in detail. It discusses how multiplier-cum-divider circuits are developed with saw tooth and triangular waves. It covers important topics including non-linear op-amp circuits, triangular wave referenced multiplier-cum-divider with multiplexes, saw tooth wave referenced MCD with analog switches, peak responding MCD with analog switches and triangular wave referenced MCD with analog switches. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering.
Preface xi
Author biography xiii
List of Abbreviations
xv
Chapter 1 Introduction
1(6)
1.1 Characteristics
3(1)
1.2 Specifications
3(1)
1.3 Errors
3(1)
1.4 Individual Error
4(1)
1.5 Offset Nulling
5(1)
1.6 MCD Types
5(2)
Chapter 2 Basic Components
7(12)
2.1 Inverting Amplifier
7(1)
2.2 Non-inverting Amplifiers
8(2)
2.3 Integrator
10(1)
2.4 Analog Switches
11(3)
2.5 Analog Multiplexers
14(1)
2.6 Astable Multivibrator
15(4)
Chapter 3 Non-linear Circuits
19(18)
3.1 Voltage Comparators
19(5)
3.2 Schmitt Triggers
24(1)
3.3 Half-Wave Rectifiers
25(1)
3.4 Full-Wave Rectifiers
26(3)
3.5 Peak Detectors
29(1)
3.6 Sample and Hold Circuits
30(1)
3.7 Log Amplifiers
30(2)
3.8 Anti-log Amplifiers
32(5)
Chapter 4 Conventional MCDs
37(12)
4.1 Log--Anti-log MCDs -- Type I
37(3)
4.2 Log--Anti-log MCDs -- Type II
40(1)
4.3 MCD Using FETs
41(2)
4.4 MCD Using MOSFETs
43(2)
4.5 MCD Using Two Analog Multipliers
45(1)
4.6 MCD Using Two Analog Dividers
46(1)
4.7 MCD Using Two Analog Dividers in Cascade
46(1)
4.8 MCD Using a Divider and a Multiplier in Series
47(2)
Chapter 5 Sawtooth Wave-Referenced Time-Division MCD Using Multiplexers
49(16)
5.1 Sawtooth Wave Generators
49(3)
5.2 Double Multiplexing--Averaging Time-Division MCD
52(3)
5.3 Time-Division Single-Slope Peak-Detecting MCD
55(3)
5.4 Time-Division Multiply--Divide MCD
58(3)
5.5 Time-Division Divide--Multiply MCD
61(4)
Chapter 6 Triangular Wave-Referenced MCD with Multiplexers
65(12)
6.1 Triangular Wave Generators
65(3)
6.2 Time-Division MCD
68(2)
6.3 Time-Division Divide--Multiply MCD
70(3)
6.4 Time-Division Multiply--Divide MCD
73(4)
Chapter 7 Peak-Responding MCDs with Multiplexers
77(18)
7.1 Double Single-Slope Peak-Responding MCD
77(4)
7.2 Double Dual-Slope Peak-Responding MCD Using Feedback Comparator
81(4)
7.3 Double Dual-Slope Peak-Responding MCD with Flip Flop
85(3)
7.4 Pulse-Width Integrated Peak-Responding MCD
88(3)
7.5 MCD Using Voltage Tunable Astable Multivibrator
91(4)
Chapter 8 Sawtooth Wave-Referenced MCDs Using Analog Switches
95(20)
8.1 Sawtooth Wave Generators
95(2)
8.2 Double Switching and Averaging Time-Division MCD
97(4)
8.3 Time-Division Single-Slope Peak-Detecting MCD
101(3)
8.4 Time-Division Multiply--Divide MCD
104(5)
8.5 Time-Division Divide--Multiply MCD
109(6)
Chapter 9 Triangular Wave-Referenced MCD with Analog Switches
115(14)
9.1 Time-Division MCD
115(4)
9.2 Divide--Multiply Time-Division MCD
119(4)
9.3 Multiply--Divide Time-Division MCD
123(6)
Chapter 10 Peak-Responding MCDs with Analog Switches
129(26)
10.1 Double Single-Slope Peak-Responding MCDs
129(4)
10.2 Double Dual-Slope MCD Using Feedback Comparator
133(7)
10.3 Double Dual-Slope MCD with Flip Flop
140(5)
10.4 Pulse-Width Integrated Peak-Responding MCD
145(4)
10.5 MCD Using Voltage-Tunable Astable Multivibrator
149(6)
Chapter 11 Time-Division MCD without Reference
155(18)
11.1 Time-Division MCD Type I -- Multiplexing
155(3)
11.2 Time-Division MCD Type II -- Multiplexing
158(3)
11.3 Time-Division MCD Type I -- Switching
161(5)
11.4 Time-Division MCD Type II -- Switching
166(7)
Chapter 12 Pulse Position-Responding MCDs
173(14)
12.1 Pulse Position Peak-Detecting MCDs -- Multiplexing
173(4)
12.2 Pulse Position Peak-Detecting MCDs -- Switching
177(3)
12.3 Pulse Position Peak-Sampling MCD -- Multiplexing
180(3)
12.4 Pulse Position Peak-Sampling MCD -- Switching
183(4)
Chapter 13 Applications of MCDs
187(10)
13.1 Balanced Modulator
187(1)
13.2 Amplitude Modulator
188(1)
13.3 Frequency Doubler
189(1)
13.4 Phase Angle Detector
190(1)
13.5 RMS Detector
191(1)
13.6 Rectifier
191(1)
13.7 Inductance Measurement by Phase Angle Response
192(1)
13.8 Capacitance Measurement by Phase Angle Response
193(2)
13.9 Automatic Gain Control Circuit -- Type I
195(1)
13.10 Automatic Gain Control Circuit -- Type II
195(2)
Chapter 14 Circuit Simulation
197(10)
14.1 Simulation of Time-Division Multiply--Divide MCD
198(2)
14.2 Simulation of Time-Division Divide--Multiply MCD
200(1)
14.3 Simulation of Time-Division MCD -- Type I -- Switching
200(2)
14.4 Simulation of Time-Division MCD -- Type II -- Switching
202(5)
Appendix 207(4)
Bibliography 211(4)
Index 215
K.C. Selvam is currently working as a technical officer in the department of electrical engineering at the Indian Institute of Technology in Madras, India. He has been doing research and development work for the last 30 years and has published more than 34 research papers in various national and international journals. His book Design of Analogue Multipliers with Operational Amplifiers was also published by CRC Pressis. In 1996 he received and award from IETE for the best paper and the students' journal award of IETE in 2017. A main area of his interest relates to the design and development of function circuits to find their applications in modern measurement and instrumentation systems.