Muutke küpsiste eelistusi

E-raamat: Noise and Vibration Analysis - Signal Analysis and Experimental Procedures: Signal Analysis and Experimental Procedures [Wiley Online]

(University of Southern Denmark)
  • Formaat: 464 pages
  • Ilmumisaeg: 04-Feb-2011
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 470978163
  • ISBN-13: 9780470978160
  • Wiley Online
  • Hind: 140,62 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 464 pages
  • Ilmumisaeg: 04-Feb-2011
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 470978163
  • ISBN-13: 9780470978160
First complete and practical guide to combine both signal processing and modal analysis theory with their practical application in noise and vibration analysis

Noise and Vibration Analysis adopts a practical learning approach, building upon two existing class-note type books that have been used by the author for 10 years of teaching two academic courses. As such, it provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for advanced students new to the subject. Offering remarkably complete and comprehensive coverage, it addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis; this is an area that combines electrical engineering topics such as sensor technology and signal processing, and the mechanical engineering topics of dynamic systems and modal analysis

  • Adopts a practical learning approach with exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study
  • Explains how noise and vibration analysis techniques are applied in modern instruments and software for noise and vibration analysis
  • Features numerous line diagrams and other illustrations
  • Accompanied by a web site with MATLAB® examples
About the Author xv
Preface xvii
Acknowledgements xxi
List of Abbreviations
xxiii
Notation xxv
1 Introduction
1(6)
1.1 Noise and Vibration
1(1)
1.2 Noise and Vibration Analysis
2(1)
1.3 Application Areas
3(1)
1.4 Analysis of Noise and Vibrations
3(1)
1.4.1 Experimental Analysis
4(1)
1.5 Standards
4(1)
1.6 Becoming a Noise and Vibration Analysis Expert
4(3)
1.6.1 The Virtue of Simulation
4(1)
1.6.2 Learning Tools and the Format of this Book
5(2)
2 Dynamic Signals and Systems
7(28)
2.1 Introduction
7(1)
2.2 Periodic Signals
8(5)
2.2.1 Sine Waves
8(2)
2.2.2 Complex Sines
10(1)
2.2.3 Interacting Sines
11(1)
2.2.4 Orthogonality of Sines
12(1)
2.3 Random Signals
13(1)
2.4 Transient Signals
14(1)
2.5 RMS Value and Power
15(1)
2.6 Linear Systems
16(9)
2.6.1 The Laplace Transform
17(3)
2.6.2 The Transfer Function
20(1)
2.6.3 The Impulse Response
21(1)
2.6.4 Convolution
22(3)
2.7 The Continuous Fourier Transform
25(6)
2.7.1 Characteristics of the Fourier Transform
27(2)
2.7.2 The Frequency Response
29(1)
2.7.3 Relationship between the Laplace and Frequency Domains
29(1)
2.7.4 Transient versus Steady-state Response
30(1)
2.8
Chapter Summary
31(1)
2.9 Problems
32(3)
References
33(2)
3 Time Data Analysis
35(28)
3.1 Introduction to Discrete Signals
35(1)
3.2 The Sampling Theorem
35(7)
3.2.1 Aliasing
37(1)
3.2.2 Discrete Representation of Analog Signals
38(2)
3.2.3 Interpolation and Resampling
40(2)
3.3 Filters
42(9)
3.3.1 Analog Filters
43(2)
3.3.2 Digital Filters
45(1)
3.3.3 Smoothing Filters
46(1)
3.3.4 Acoustic Octave Filters
47(2)
3.3.5 Analog RMS Integration
49(1)
3.3.6 Frequency Weighting Filters
49(2)
3.4 Time Series Analysi
51(7)
3.4.1 Min- and Max-analysis
51(1)
3.4.2 Time Data Integration
51(4)
3.4.3 Time Data Differentiation
55(3)
3.4.4 FFT-based Processing
58(1)
3.5
Chapter Summary
58(1)
3.6 Problems
59(4)
References
60(3)
4 Statistics and Random Processes
63(24)
4.1 Introduction to the Use of Statistics
63(2)
4.1.1 Ensemble and Time Averages
64(1)
4.1.2 Stationarity and Ergodicity
64(1)
4.2 Random Theory
65(9)
4.2.1 Expected Value
65(1)
4.2.2 Errors in Estimates
65(1)
4.2.3 Probability Distribution
66(1)
4.2.4 Probability Density
66(1)
4.2.5 Histogram
67(1)
4.2.6 Sample Probability Density Estimate
68(1)
4.2.7 Average Value and Variance
68(2)
4.2.8 Central Moments
70(1)
4.2.9 Skewness
70(1)
4.2.10 Kurtosis
70(1)
4.2.11 Crest Factor
71(1)
4.2.12 Correlation Functions
71(1)
4.2.13 The Gaussian Probability Distribution
72(2)
4.3 Statistical Methods
74(7)
4.3.1 Hypothesis Tests
74(3)
4.3.2 Test of Normality
77(1)
4.3.3 Test of Stationarity
77(4)
4.4 Quality Assessment of Measured Signals
81(3)
4.5
Chapter Summary
84(1)
4.6 Problems
85(2)
References
86(1)
5 Fundamental Mechanics
87(32)
5.1 Newton's Laws
87(1)
5.2 The Single Degree-of-freedom System (SDOF)
88(7)
5.2.1 The Transfer Function
88(1)
5.2.2 The Impulse Response
89(2)
5.2.3 The Frequency Response
91(3)
5.2.4 The Q-factor
94(1)
5.2.5 SDOF Forced Response
95(1)
5.3 Alternative Quantities for Describing Motion
95(2)
5.4 Frequency Response Plot Formats
97(6)
5.4.1 Magnitude and Phase
97(3)
5.4.2 Real and Imaginary Parts
100(1)
5.4.3 The Nyquist Plot - Imaginary vs. Real Part
100(3)
5.5 Determining Natural Frequency and Damping
103(1)
5.5.1 Peak in the Magnitude of FRF
103(1)
5.5.2 Peak in the Imaginary Part of FRF
103(1)
5.5.3 Resonance Bandwidth (3 dB Bandwidth)
104(1)
5.5.4 Circle in the Nyquist Plot
104(1)
5.6 Rotating Mass
104(2)
5.7 Some Comments on Damping
106(1)
5.7.1 Hysteretic Damping
106(1)
5.8 Models Based on SDOF Approximations
107(3)
5.8.1 Vibration Isolation
107(3)
5.8.2 Resonance Frequency and Stiffness Approximations
110(1)
5.9 The Two-degree-of-freedom System (2DOF)
110(3)
5.10 The Tuned Damper
113(2)
5.11
Chapter Summary
115(1)
5.12 Problems
115(4)
References
116(3)
6 Modal Analysis Theory
119(28)
6.1 Waves on a String
119(1)
6.2 Matrix Formulations
120(2)
6.2.1 Degree-of-freedom
121(1)
6.3 Eigenvalues and Eigenvectors
122(11)
6.3.1 Undamped System
122(3)
6.3.2 Mode Shape Orthogonality
125(2)
6.3.3 Modal Coordinates
127(1)
6.3.4 Proportional Damping
128(2)
6.3.5 General Damping
130(3)
6.4 Frequency Response of MDOF Systems
133(8)
6.4.1 Frequency Response from [ M], [ C], [ K]
133(1)
6.4.2 Frequency Response from Modal Parameters
134(4)
6.4.3 Frequency Response from [ M], [ K], and ε - Modal Damping
138(1)
6.4.4 Mode Shape Scaling
138(1)
6.4.5 The Effect of Node Lines on FRFs
139(1)
6.4.6 Antiresonance
140(1)
6.4.7 Impulse Response of MDOF Systems
141(1)
6.5 Time Domain Simulation of Forced Response
141(2)
6.6
Chapter Summary
143(1)
6.7 Problems
144(3)
References
145(2)
7 Transducers for Noise and Vibration Analysis
147(20)
7.1 The Piezoelectric Effect
147(1)
7.2 The Charge Amplifier
148(1)
7.3 Transducers with Built-In Impedance Converters, `IEPE'
149(3)
7.3.1 Low-frequency Characteristics
150(1)
7.3.2 High-frequency Characteristics
151(1)
7.3.3 Transducer Electronic Data Sheet, TEDS
152(1)
7.4 The Piezoelectric Accelerometer
152(5)
7.4.1 Frequency Characteristics
153(2)
7.4.2 Mounting Accelerometers
155(1)
7.4.3 Electrical Noise
155(1)
7.4.4 Choosing an Accelerometer
155(2)
7.5 The Piezoelectric Force Transducer
157(1)
7.6 The Impedance Head
158(1)
7.7 The Impulse Hammer
159(1)
7.8 Accelerometer Calibration
159(2)
7.9 Measurement Microphones
161(1)
7.10 Microphone Calibration
162(1)
7.11 Shakers for Structure Excitation
162(1)
7.12 Some Comments on Measurement Procedures
163(1)
7.13 Problems
164(3)
References
165(2)
8 Frequency Analysis Theory
167(10)
8.1 Periodic Signals - The Fourier Series
167(2)
8.2 Spectra of Periodic Signals
169(1)
8.2.1 Frequency and Time
170(1)
8.3 Random Processes
170(3)
8.3.1 Spectra of Random Processes
171(2)
8.4 Transient Signals
173(1)
8.5 Interpretation of spectra
173(2)
8.6
Chapter Summary
175(1)
8.7 Problems
175(2)
References
176(1)
9 Experimental Frequency Analysis
177(28)
9.1 Frequency Analysis Principles
177(2)
9.1.1 Nonparametric Frequency Analysis
178(1)
9.2 Octave and Third-octave Band Spectra
179(1)
9.2.1 Time Constants
179(1)
9.2.2 Real-time versus Serial Measurements
179(1)
9.3 The Discrete Fourier Transform (DFT)
180(22)
9.3.1 The Fast Fourier Transform, FFT
181(1)
9.3.2 The DFT in Short
182(1)
9.3.3 The Basis of the DFT
183(1)
9.3.4 Periodicity of the DFT
183(3)
9.3.5 Properties of the DFT
186(1)
9.3.6 Relation between DFT and Continuous Spectrum
186(1)
9.3.7 Leakage
187(2)
9.3.8 The Picket-fence Effect
189(2)
9.3.9 Time Windows for Periodic Signals
191(7)
9.3.10 Time Windows for Random Signals
198(1)
9.3.11 Oversampling in FFT Analysis
199(1)
9.3.12 Circular Convolution and Aliasing
199(1)
9.3.13 Zero Padding
200(1)
9.3.14 Zoom FFT
201(1)
9.4
Chapter Summary
202(1)
9.5 Problems
203(2)
References
204(1)
10 Spectrum and Correlation Estimates Using the DFT
205(40)
10.1 Averaging
205(1)
10.2 Spectrum Estimators for Periodic Signals
206(3)
10.2.1 The Autopower Spectrum
207(1)
10.2.2 Linear Spectrum
208(1)
10.2.3 Phase Spectrum
208(1)
10.3 Estimators for PSD and CSD
209(15)
10.3.1 The Periodogram
209(2)
10.3.2 Welch's Method
211(1)
10.3.3 Window Correction for Welch Estimates
211(1)
10.3.4 Bias Error in Welch Estimates
212(5)
10.3.5 Random Error in Welch Estimates
217(4)
10.3.6 The Smoothed Periodogram Estimator
221(2)
10.3.7 Bias Error in Smoothed Periodogram Estimates
223(1)
10.3.8 Random Error in Smoothed Periodogram Estimates
224(1)
10.4 Estimator for Correlation Functions
224(2)
10.5 Estimator for Transient Signals
226(2)
10.5.1 Windows for Transient Signals
227(1)
10.6 Spectrum Estimation in Practice
228(10)
10.6.1 Linear Spectrum Versus PSD
228(1)
10.6.2 Example of a Spectrum of a Periodic Signal
229(2)
10.6.3 Practical PSD Estimation
231(2)
10.6.4 Spectrum of Mixed Property Signal
233(1)
10.6.5 Calculating RMS Values in Practice
234(1)
10.6.6 RMS From Linear Spectrum of Periodic Signal
234(2)
10.6.7 RMS from PSD
236(1)
10.6.8 Weighted RMS Values
236(2)
10.6.9 Integration and Differentiation in the Frequency Domain
238(1)
10.7 Multi-channel Spectral Analysis
238(2)
10.7.1 Matrix Notation for MIMO Spectral Analysis
239(1)
10.7.2 Arranging Spectral Matrices in MATLAB/Octav
240(1)
10.8
Chapter Summary
240(1)
10.9 Problems
241(4)
References
242(3)
11 Measurement and Analysis Systems
245(18)
11.1 Principal Design
246(1)
11.2 Hardware for Noise and Vibration Analysis
246(11)
11.2.1 Signal Conditioning
247(1)
11.2.2 Analog-to-digital Conversion, ADC
247(6)
11.2.3 Practical Issues
253(2)
11.2.4 Hardware Specifications
255(2)
11.2.5 Transient (Shock) Recording
257(1)
11.3 FFT Analysis Software
257(4)
11.3.1 Block Processing
258(1)
11.3.2 Data Scaling
259(1)
11.3.3 Triggering
259(1)
11.3.4 Averaging
260(1)
11.3.5 FFT Setup Parameters
261(1)
11.4
Chapter Summary
261(1)
11.5 Problems
261(2)
References
262(1)
12 Rotating Machinery Analysis
263(22)
12.1 Vibrations in Rotating Machines
263(1)
12.2 Understanding Time-Frequency Analysis
264(1)
12.3 Rotational Speed Signals (Tachometer Signals)
265(2)
12.4 RPM Maps
267(2)
12.4.1 The Waterfall Plot
268(1)
12.4.2 The Color Map Plot
268(1)
12.5 Smearing
269(3)
12.6 Order Tracks
272(1)
12.7 Synchronous Sampling
272(4)
12.7.1 DFT Parameters after Resampling
276(1)
12.8 Averaging Rotation-speed-dependent Signals
276(1)
12.9 Adding Change in RMS with Time
277(4)
12.10 Parametric Methods
281(1)
12.11
Chapter Summary
282(1)
12.12 Problems
282(3)
References
283(2)
13 Single-input Frequency Response Measurements
285(38)
13.1 Linear Systems
286(1)
13.2 Determining Frequency Response Experimentally
286(4)
13.2.1 Method 1 - the H1 Estimator
286(2)
13.2.2 Method 2 - the H2 Estimator
288(1)
13.2.3 Method 3 - the Hc Estimator
289(1)
13.3 Important Relationships for Linear Systems
290(1)
13.4 The Coherence Function
291(1)
13.5 Errors in Determining the Frequency Response
291(4)
13.5.1 Bias Error in FRF Estimates
292(1)
13.5.2 Random Error in FRF Estimates
293(2)
13.5.3 Bias and Random Error Trade-offs
295(1)
13.6 Coherent Output Power
295(1)
13.7 The Coherence Function in Practice
296(1)
13.7.1 Non-random Excitation
297(1)
13.8 Impact Excitation
297(9)
13.8.1 The Force Signal
298(2)
13.8.2 The Response Signal and Exponential Window
300(1)
13.8.3 Impact Testing Software
300(3)
13.8.4 Compensating for the Influence of the Exponential Window
303(2)
13.8.5 Sources of Error
305(1)
13.8.6 Improving Impact Testing by Alternative Processing
306(1)
13.9 Shaker Excitation
306(6)
13.9.1 Signal-to-noise Ratio Comparison
307(1)
13.9.2 Pure Random Noise
308(2)
13.9.3 Burst Random Noise
310(1)
13.9.4 Pseudo-random Noise
310(1)
13.9.5 Periodic Chirp
311(1)
13.9.6 Stepped-sine Excitation
311(1)
13.10 Examples of FRF Estimation - No Extraneous Noise
312(3)
13.10.1 Pure Random Excitation
312(1)
13.10.2 Burst Random Excitation
312(2)
13.10.3 Periodic Excitation
314(1)
13.11 Example of FRF Estimation - with Output Noise
315(1)
13.12 Examples of FRF Estimation - with Input and Output Noise
316(3)
13.12.1 Sources of Error during Shaker Excitation
318(1)
13.12.2 Checking the Shaker Attachment
318(1)
13.12.3 Other Sources of Error
319(1)
13.13
Chapter Summary
319(2)
13.14 Problems
321(2)
References
321(2)
14 Multiple-input Frequency Response Measurement
323(28)
14.1 Multiple-input Systems
323(8)
14.1.1 The 2-input/1-output System
324(1)
14.1.2 The 2-input/1-output System - matrix notation
325(1)
14.1.3 The H1 Estimator for MIMO
326(1)
14.1.4 Multiple Coherence
327(2)
14.1.5 Computation Considerations for Multiple-input System
329(1)
14.1.6 The Hv Estimator
329(1)
14.1.7 Other MIMO FRF Estimators
330(1)
14.2 Conditioned Input Signals
331(5)
14.2.1 Conditioned Output Signals
333(1)
14.2.2 Partial Coherence
333(1)
14.2.3 Ordering Signals Prior to Conditioning
334(1)
14.2.4 Partial Coherent Output Power Spectra
334(1)
14.2.5 Backtracking the H-systems
335(1)
14.2.6 General Conditioned Systems
336(1)
14.3 Bias and Random Errors for Multiple-input Systems
336(1)
14.4 Excitation Signals for MIMO Analysis
337(2)
14.4.1 Pure Random Noise
337(1)
14.4.2 Burst Random Noise
338(1)
14.4.3 Periodic Random Noise
338(1)
14.4.4 The Multiphase Stepped-sine Method (MPSS)
338(1)
14.5 Data Synthesis and Simulation Examples
339(6)
14.5.1 Burst Random - Output Noise
339(3)
14.5.2 Burst and Periodic Random - Input Noise
342(1)
14.5.3 Periodic Random - Input and Output Noise
342(3)
14.6 Real MIMO Data Case
345(3)
14.7
Chapter Summary
348(1)
14.8 Problems
349(2)
References
350(1)
15 Orthogonalization of Signals
351(24)
15.1 Principal Components
351(9)
15.1.1 Principal Components Used to Find Number of Sources
353(2)
15.1.2 Principal Components Used for Data Reduction
355(5)
15.2 Virtual Signals
360(7)
15.2.1 Virtual Input Coherence
361(3)
15.2.2 Virtual Input/Output Coherence
364(1)
15.2.3 Virtual Coherent Output Power
364(3)
15.3 Noise Source Identification (NSI)
367(5)
15.3.1 Multiple Source Example
367(3)
15.3.2 Automotive Example
370(2)
15.4
Chapter Summary
372(1)
15.5 Problems
373(2)
References
373(2)
16 Advanced Analysis Methods
375(48)
16.1 Shock Response Spectrum
375(3)
16.2 The Hilbert Transform
378(6)
16.2.1 Computation of the Hilbert Transform
379(1)
16.2.2 Envelope Detection by the Hilbert Transform
379(1)
16.2.3 Relating Real and Imaginary Parts of Frequency Response Functions
380(4)
16.3 Cepstrum Analysis
384(4)
16.3.1 Power Cepstrum
385(2)
16.3.2 Complex Cepstrum
387(1)
16.3.3 Inverse Cepstrum
387(1)
16.4 The Envelope Spectrum
388(2)
16.5 Creating Random Signals with Known Spectral Density
390(1)
16.6 Operational Deflection Shapes - ODS
391(2)
16.6.1 Multiple Reference ODS
392(1)
16.7 Introduction to Experimental Modal Analysis
393(6)
16.7.1 Main Steps in EMA
393(1)
16.7.2 Data Checks
394(1)
16.7.3 Mode Indicator Functions
395(2)
16.7.4 The MAC Matrix
397(1)
16.7.5 Modal Parameter Extraction
398(1)
16.8
Chapter Summary
399(1)
16.9 Problems
400(3)
References
400(3)
Appendix A Complex Numbers
403(4)
Appendix B Logarithmic Diagrams
407(4)
Appendix C Decibels
411(2)
Appendix D Some Elementary Matrix Algebra
413(4)
Reference
415(2)
Appendix E Eigenvalues and the SVD
417(4)
E.1 Eigenvalues and Complex Matrices
417(1)
E.2 The Singular Value Decomposition (SVD)
418(1)
Reference
419(2)
Appendix F Organizations and Resources
421(2)
Bibliography 423(6)
Index 429
Anders Brandt is an independent consultant based in Sweden. He has 20 years of experience in noise and vibration analysis with universities and industry. Brandt received an MSc degree in Electrical Engineering from Chalmers University of Technology, Göteborg, Sweden, in 1986, and a Licentiate of Engineering Degree (Dr. Ing.) in Medical Electronics, from the same university in 1989. In 1996 Brandt was a co-founder of Axiom EduTech, a company offering education and software for vibration analysis worldwide. Brandt is a well-known and appreciated teacher of applied signal analysis and vibration analysis. He also has many years' experience with different commercial measurement systems for vibration analysis and modal analysis.