Foreword |
|
xi | |
|
|
Preface |
|
xiii | |
|
Chapter 1 NoSQL Languages and Systems |
|
1 | (20) |
|
|
|
1 | (6) |
|
1.1.1 The rise of NoSQL systems and languages |
|
|
1 | (3) |
|
1.1.2 Overview of NoSQL concepts |
|
|
4 | (2) |
|
1.1.3 Current trends of French research in NoSQL languages |
|
|
6 | (1) |
|
1.2 Join implementations on top of MapReduce |
|
|
7 | (5) |
|
1.3 Models for NoSQL languages and systems |
|
|
12 | (4) |
|
1.4 New challenges for database research |
|
|
16 | (2) |
|
|
18 | (3) |
Chapter 2 Distributed SPARQL Query Processing: a Case Study with Apache Spark |
|
21 | (36) |
|
|
|
|
|
21 | (1) |
|
|
22 | (7) |
|
2.2.1 RDF framework and data model |
|
|
22 | (3) |
|
2.2.2 SPARQL query language |
|
|
25 | (4) |
|
2.3 SPARQL query processing |
|
|
29 | (5) |
|
2.3.1 SPARQL with and without RDF/S entailment |
|
|
29 | (1) |
|
|
30 | (3) |
|
2.3.3 Triple store systems |
|
|
33 | (1) |
|
|
34 | (7) |
|
2.4.1 MapReduce-based SPARQL processing |
|
|
35 | (4) |
|
|
39 | (2) |
|
2.5 SPARQL on Apache Spark |
|
|
41 | (12) |
|
|
41 | (1) |
|
|
42 | (6) |
|
2.5.3 Experimental evaluation |
|
|
48 | (5) |
|
|
53 | (4) |
Chapter 3 Doing Web Data: from Dataset Recommendation to Data Linking |
|
57 | (36) |
|
|
|
|
|
|
57 | (5) |
|
3.1.1 The Semantic Web vision |
|
|
57 | (1) |
|
3.1.2 Linked data life cycles |
|
|
58 | (3) |
|
|
61 | (1) |
|
3.2 Datasets recommendation for data linking |
|
|
62 | (7) |
|
|
63 | (1) |
|
3.2.2 Dataset recommendation for data linking based on a Semantic Web index |
|
|
64 | (1) |
|
3.2.3 Dataset recommendation for data linking based on social networks |
|
|
64 | (1) |
|
3.2.4 Dataset recommendation for data linking based on domain-specific keywords |
|
|
65 | (1) |
|
3.2.5 Dataset recommendation for data linking based on topic modeling |
|
|
65 | (1) |
|
3.2.6 Dataset recommendation for data linking based on topic profiles |
|
|
66 | (1) |
|
3.2.7 Dataset recommendation for data linking based on intensional profiling |
|
|
67 | (1) |
|
3.2.8 Discussion on dataset recommendation approaches |
|
|
68 | (1) |
|
3.3 Challenges of linking data |
|
|
69 | (9) |
|
|
70 | (4) |
|
3.3.2 Ontological dimension |
|
|
74 | (3) |
|
|
77 | (1) |
|
3.4 Techniques applied to the data linking process |
|
|
78 | (8) |
|
3.4.1 Data linking techniques |
|
|
79 | (4) |
|
|
83 | (3) |
|
|
86 | (1) |
|
|
87 | (6) |
Chapter 4 Big Data Integration in Cloud Environments: Requirements, Solutions and Challenges |
|
93 | (42) |
|
|
|
|
93 | (3) |
|
4.2 Big Data integration requirements in Cloud environments |
|
|
96 | (3) |
|
4.3 Automatic data store selection and discovery |
|
|
99 | (4) |
|
|
99 | (1) |
|
4.3.2 Model-based approaches |
|
|
99 | (1) |
|
4.3.3 Matching-oriented approaches |
|
|
100 | (2) |
|
|
102 | (1) |
|
4.4 Unique access for all data stores |
|
|
103 | (5) |
|
|
103 | (1) |
|
4.4.2 ODBAPI: a unified REST API for relational and NoSQL data stores |
|
|
104 | (1) |
|
|
105 | (2) |
|
|
107 | (1) |
|
4.5 Unified data model and query languages |
|
|
108 | (10) |
|
|
108 | (1) |
|
4.5.2 Data models of classical data integration approaches |
|
|
109 | (1) |
|
4.5.3 A global schema to unify the view over relational and NoSQL data stores |
|
|
110 | (3) |
|
|
113 | (4) |
|
|
117 | (1) |
|
4.6 Query processing and optimization |
|
|
118 | (7) |
|
|
118 | (1) |
|
4.6.2 Federated query language approaches |
|
|
118 | (3) |
|
4.6.3 Integrated query language approaches |
|
|
121 | (3) |
|
|
124 | (1) |
|
4.7 Summary and open issues |
|
|
125 | (4) |
|
|
125 | (2) |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
129 | (6) |
Chapter 5 Querying RDF Data: a Multigraph-based Approach |
|
135 | (32) |
|
|
|
|
|
135 | (2) |
|
|
137 | (1) |
|
5.3 Background and preliminaries |
|
|
137 | (6) |
|
|
138 | (2) |
|
|
140 | (2) |
|
5.3.3 SPARQL querying by adopting multigraph homomorphism |
|
|
142 | (1) |
|
5.4 AMBER: a SPARQL querying engine |
|
|
143 | (1) |
|
|
144 | (5) |
|
|
144 | (1) |
|
5.5.2 Vertex signature index |
|
|
145 | (3) |
|
5.5.3 Vertex neighborhood index |
|
|
148 | (1) |
|
5.6 Query matching procedure |
|
|
149 | (10) |
|
5.6.1 Vertex-level processing |
|
|
151 | (1) |
|
5.6.2 Processing satellite vertices |
|
|
152 | (2) |
|
5.6.3 Arbitrary query processing |
|
|
154 | (5) |
|
5.7 Experimental analysis |
|
|
159 | (5) |
|
|
159 | (1) |
|
5.7.2 Workload generation |
|
|
160 | (1) |
|
5.7.3 Comparison with RDF engines |
|
|
161 | (3) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (3) |
Chapter 6 Fuzzy Preference Queries to NoSQL Graph Databases |
|
167 | (36) |
|
|
|
|
|
|
|
167 | (1) |
|
6.2 Preliminary statements |
|
|
168 | (8) |
|
|
168 | (6) |
|
|
174 | (2) |
|
6.3 Fuzzy preference queries over graph databases |
|
|
176 | (17) |
|
6.3.1 Fuzzy preference queries over crisp graph databases |
|
|
176 | (6) |
|
6.3.2 Fuzzy preference queries over fuzzy graph databases |
|
|
182 | (11) |
|
6.4 Implementation challenges |
|
|
193 | (4) |
|
6.4.1 Modeling fuzzy databases |
|
|
193 | (1) |
|
6.4.2 Evaluation of queries with fuzzy preferences |
|
|
193 | (2) |
|
|
195 | (2) |
|
|
197 | (1) |
|
6.6 Conclusion and perspectives |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (4) |
Chapter 7 Relevant Filtering in a Distributed Content-based Publish/Subscribe System |
|
203 | (42) |
|
|
|
|
203 | (2) |
|
7.2 Related work: novelty and diversity filtering |
|
|
205 | (1) |
|
7.3 A Publish/Subscribe data model |
|
|
206 | (2) |
|
|
206 | (1) |
|
7.3.2 Weighting terms in textual data flows |
|
|
207 | (1) |
|
7.4 Publish/Subscribe relevance |
|
|
208 | (4) |
|
7.4.1 Items and histories |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
7.4.4 An overview of the filtering process |
|
|
210 | (1) |
|
7.4.5 Choices of relevance |
|
|
210 | (2) |
|
7.5 Real-time integration of novelty and diversity |
|
|
212 | (9) |
|
7.5.1 Centralized implementation |
|
|
212 | (4) |
|
7.5.2 Distributed filtering |
|
|
216 | (5) |
|
|
221 | (7) |
|
7.6.1 TDV computation techniques |
|
|
221 | (2) |
|
7.6.2 Incremental approach |
|
|
223 | (2) |
|
7.6.3 TDV in a distributed environment |
|
|
225 | (3) |
|
|
228 | (13) |
|
7.7.1 Implementation and description of datasets |
|
|
229 | (1) |
|
|
229 | (1) |
|
|
230 | (4) |
|
7.7.4 Performance evaluation in the centralized environment |
|
|
234 | (4) |
|
7.7.5 Performance evaluation in a distributed environment |
|
|
238 | (2) |
|
7.7.6 Quality of filtering |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (3) |
List of Authors |
|
245 | (2) |
Index |
|
247 | |