Foreword |
|
xi | |
Acknowledgments |
|
xiii | |
|
The Emergence of 3D Spectroscopy in Astronomy |
|
|
1 | (1) |
|
|
1 | (3) |
|
|
4 | (5) |
|
|
9 | (2) |
|
Part I 3D Instrumentation |
|
|
11 | (140) |
|
1 The Spectroscopic Toolbox |
|
|
13 | (48) |
|
|
13 | (5) |
|
1.1.1 Geometrical Optics #101 |
|
|
13 | (2) |
|
1.1.2 Etendue Conservation |
|
|
15 | (3) |
|
1.2 Basic Spectroscopic Principles |
|
|
18 | (2) |
|
1.2.1 The Spectroscopic Case |
|
|
18 | (2) |
|
|
20 | (5) |
|
|
20 | (2) |
|
1.3.2 Interference Filters |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (6) |
|
|
25 | (2) |
|
|
27 | (1) |
|
1.4.3 The Grating Spectrograph |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (5) |
|
|
31 | (1) |
|
1.5.2 The Photographic Plate |
|
|
32 | (1) |
|
1.5.3 2D Optical Detectors |
|
|
32 | (3) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (9) |
|
1.6.1 Introduction to Optics |
|
|
36 | (1) |
|
1.6.2 Optical Computation |
|
|
37 | (3) |
|
1.6.3 Optical Fabrication |
|
|
40 | (2) |
|
1.6.4 Anti-Reflection Coatings |
|
|
42 | (1) |
|
1.6.5 High Reflectivity Coatings |
|
|
43 | (1) |
|
|
44 | (1) |
|
1.7 Mechanics, Cryogenics and Electronics |
|
|
45 | (5) |
|
|
45 | (3) |
|
|
48 | (1) |
|
|
48 | (1) |
|
1.7.4 Electronics and Control System |
|
|
49 | (1) |
|
1.8 Management, Timeline, and Cost |
|
|
50 | (2) |
|
|
52 | (9) |
|
2 Multiobject Spectroscopy |
|
|
61 | (20) |
|
|
61 | (1) |
|
2.1.1 MOS History: The Pioneers |
|
|
61 | (1) |
|
2.1.2 MOS History: The Digital Age |
|
|
62 | (1) |
|
|
62 | (1) |
|
2.2 Slitless Based Multi-Object Spectroscopy |
|
|
62 | (2) |
|
2.2.1 Slitless Spectroscopy Concept |
|
|
62 | (2) |
|
2.2.2 Slitless Spectroscopic Systems |
|
|
64 | (1) |
|
2.3 Multislit-Based Multiobject Spectroscopy |
|
|
64 | (6) |
|
|
64 | (2) |
|
|
66 | (3) |
|
|
69 | (1) |
|
2.3.4 Multislit Instruments |
|
|
70 | (1) |
|
2.4 Fiber-Based Multiobject Spectroscopy |
|
|
70 | (11) |
|
|
70 | (1) |
|
2.4.2 Positioning Systems |
|
|
71 | (4) |
|
2.4.3 Fiber-Based Spectrograph |
|
|
75 | (1) |
|
2.4.4 Fiber Systems Performance |
|
|
75 | (1) |
|
2.4.5 Present Multifiber Facilities |
|
|
76 | (1) |
|
|
77 | (4) |
|
3 Scanning Imaging Spectroscopy |
|
|
81 | (14) |
|
|
81 | (1) |
|
3.2 Scanning Long-Slit Spectroscopy |
|
|
81 | (2) |
|
3.2.1 The Scanning Long-Slit Spectroscopy Concept |
|
|
81 | (1) |
|
|
82 | (1) |
|
3.3 Scanning Fabry-Perot Spectroscopy |
|
|
83 | (5) |
|
|
83 | (1) |
|
3.3.2 Fixed Fabry-Perot Concept |
|
|
83 | (2) |
|
3.3.3 Scanning Fabry-Perot |
|
|
85 | (3) |
|
3.4 Scanning Fourier Transform Spectroscopy |
|
|
88 | (3) |
|
3.4.1 Fourier Transform Spectrometer |
|
|
88 | (2) |
|
3.4.2 Fourier Transform Spectrograph |
|
|
90 | (1) |
|
3.5 Conclusion: Comparing the Different Scanning Flavors |
|
|
91 | (4) |
|
4 Integral Field Spectroscopy |
|
|
95 | (20) |
|
|
95 | (1) |
|
4.2 Lenslet-Based Integral Field Spectrometer |
|
|
95 | (7) |
|
4.3 Fiber-Based Integral Field Spectrometer |
|
|
102 | (2) |
|
4.3.1 The Fiber-Based IFS Concept |
|
|
102 | (1) |
|
4.3.2 The Fiber-Based IFS Development |
|
|
103 | (1) |
|
|
103 | (1) |
|
4.4 Slicer-Based Integral Field Spectrograph |
|
|
104 | (1) |
|
|
104 | (3) |
|
4.4.2 Integral Field Spectroscopy from Space |
|
|
107 | (1) |
|
4.5 Conclusion: Comparing the Different IFS Flavors |
|
|
108 | (7) |
|
5 Recent Trends in Integral Field Spectroscopy |
|
|
115 | (14) |
|
|
115 | (1) |
|
5.2 High-Contrast Integral Field Spectrometer |
|
|
115 | (2) |
|
5.2.1 Exoplanet Detection |
|
|
115 | (1) |
|
5.2.2 High-Contrast Integral Field Spectrometer |
|
|
116 | (1) |
|
5.3 Wide-Field Integral Field Spectroscopy |
|
|
117 | (3) |
|
5.3.1 The Rationale for Wide-Field Integral Field Spectroscopy |
|
|
117 | (1) |
|
5.3.2 Current Wide-Field Projects |
|
|
117 | (2) |
|
5.3.3 Wide-Field Systems 3D Format |
|
|
119 | (1) |
|
5.4 An Example: Autopsy of the MUSE Wide-Field Instrument |
|
|
120 | (3) |
|
|
120 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
5.4.4 Validity of the Multi-instrument Approach |
|
|
123 | (1) |
|
5.5 Deployable Multiobject Integral Field Spectroscopy |
|
|
123 | (6) |
|
|
123 | (1) |
|
5.5.2 The First Deployable Integral Field Units System |
|
|
124 | (1) |
|
5.5.3 Near Infra-Red Deployable Integral Field Units |
|
|
124 | (2) |
|
5.5.4 Deployable Multi-Integral Field Systems: Conclusion |
|
|
126 | (3) |
|
6 Comparing the Various 3D Techniques |
|
|
129 | (8) |
|
|
129 | (1) |
|
6.2 3D Spectroscopy Grasp Invariant Principle |
|
|
129 | (1) |
|
6.3 3-D Techniques Practical Differences |
|
|
130 | (3) |
|
|
130 | (1) |
|
6.3.2 Observational Efficiency |
|
|
131 | (2) |
|
|
133 | (4) |
|
7 Future Trends in 3D Spectroscopy |
|
|
137 | (14) |
|
7.1 3D Instrumentation for the EEI's |
|
|
137 | (1) |
|
7.2 Photonics-Based Spectrograph |
|
|
138 | (6) |
|
7.2.1 OH Suppression Filter |
|
|
138 | (3) |
|
7.2.2 Photonics Dispersers |
|
|
141 | (1) |
|
7.2.3 Photonics Fourier Transform Spectrometer |
|
|
141 | (1) |
|
|
142 | (2) |
|
7.3 Quest for the Grail: Toward 3D Detectors? |
|
|
144 | (2) |
|
|
144 | (1) |
|
7.3.2 Photon-Counting 3D Detectors |
|
|
144 | (1) |
|
7.3.3 Integrating 3D Detector |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (5) |
|
Part II Using 3D Spectroscopy |
|
|
151 | (102) |
|
|
153 | (14) |
|
|
153 | (1) |
|
8.2 Data Sampling and Resolution |
|
|
153 | (5) |
|
8.2.1 Spatial Sampling and Resolution |
|
|
154 | (1) |
|
8.2.2 Spectral Sampling and Resolution |
|
|
155 | (3) |
|
|
158 | (9) |
|
|
167 | (32) |
|
|
167 | (1) |
|
9.2 Basic Seeing Principles |
|
|
168 | (4) |
|
9.2.1 What is Astronomical Seeing? |
|
|
168 | (2) |
|
|
170 | (2) |
|
9.3 Seeing-Limited Observations |
|
|
172 | (1) |
|
9.3.1 Seeing Impact on 3D Instruments |
|
|
172 | (1) |
|
9.4 Adaptive Optics Corrected Observations |
|
|
173 | (16) |
|
9.4.1 The Need for Overcoming Atmospheric Turbulence |
|
|
173 | (1) |
|
9.4.2 Adaptive Optics Correction Principle |
|
|
173 | (3) |
|
9.4.3 Adaptive Optics Components |
|
|
176 | (2) |
|
9.4.4 Adaptive Optics: The Optical Domain Curse |
|
|
178 | (1) |
|
9.4.5 Addressing the Lack of Reference Stars |
|
|
179 | (3) |
|
9.4.6 Addressing the Small Field Limitation |
|
|
182 | (1) |
|
9.4.7 Large Field Partial AO Correction |
|
|
183 | (1) |
|
9.4.8 AO-Based Scanning Interferometers |
|
|
184 | (1) |
|
9.4.9 AO-Based Slit Spectrographs |
|
|
185 | (1) |
|
9.4.10 AO-Based Integral Field Spectrographs |
|
|
185 | (2) |
|
9.4.11 AO-Based Near-IR Multiobject Integral Field Spectrographs |
|
|
187 | (1) |
|
9.4.12 Deriving AO-Corrected Point-Spread Functions |
|
|
188 | (1) |
|
|
188 | (1) |
|
9.4.14 For Further Reading |
|
|
189 | (1) |
|
9.5 Other Atmosphere Impacts |
|
|
189 | (3) |
|
9.5.1 Atmospheric Extinction |
|
|
189 | (1) |
|
9.5.2 Atmospheric Refraction |
|
|
189 | (3) |
|
|
192 | (1) |
|
9.6 Space-Based Observations |
|
|
192 | (2) |
|
9.6.1 The Case for Space-Based Observations |
|
|
192 | (1) |
|
9.6.2 Why all Telescopes are not Space Telescopes |
|
|
193 | (1) |
|
|
194 | (5) |
|
|
199 | (14) |
|
|
199 | (1) |
|
10.2 Planning Observations |
|
|
199 | (1) |
|
10.3 Estimating Observing Time |
|
|
200 | (4) |
|
|
204 | (2) |
|
|
206 | (3) |
|
|
209 | (4) |
|
|
213 | (24) |
|
|
213 | (1) |
|
|
214 | (2) |
|
|
216 | (1) |
|
11.3.1 Slitless Multiobject Spectrograph |
|
|
216 | (1) |
|
11.3.2 Scanning Fabry-Perot Spectrograph |
|
|
216 | (1) |
|
11.3.3 Scanning Fourier Transform Spectrograph |
|
|
217 | (1) |
|
11.3.4 Getting Noise Variance Estimation |
|
|
217 | (1) |
|
11.3.5 Minimizing Systematics |
|
|
218 | (1) |
|
11.4 Data Reduction Example: The MUSE Scheme |
|
|
219 | (17) |
|
11.4.1 Detector Calibration |
|
|
221 | (1) |
|
11.4.2 Flat-Field Calibrations and Trace Mask |
|
|
222 | (2) |
|
11.4.3 Wavelength Calibrations |
|
|
224 | (1) |
|
11.4.4 Geometrical Calibration |
|
|
225 | (1) |
|
11.4.5 Basic Science Extraction and Pixel Tables |
|
|
226 | (1) |
|
11.4.6 Differential Atmospheric Correction |
|
|
226 | (2) |
|
|
228 | (1) |
|
11.4.8 Spectrophotometric and Astrometric Calibrations |
|
|
229 | (3) |
|
11.4.9 Data-Cube Creation |
|
|
232 | (1) |
|
|
233 | (3) |
|
|
236 | (1) |
|
|
237 | (4) |
|
|
237 | (1) |
|
|
237 | (3) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (4) |
|
|
243 | (2) |
|
|
245 | (8) |
|
|
245 | (1) |
|
13.2 General-Use Instruments |
|
|
245 | (5) |
|
13.3 Team-Use Instruments |
|
|
250 | (1) |
|
13.4 The Bumpy Road to Success |
|
|
251 | (2) |
References |
|
253 | (16) |
Index |
|
269 | |