Muutke küpsiste eelistusi

E-raamat: Optical 3D-Spectroscopy for Astronomy [Wiley Online]

, (CNRS, Observatoire de Lyon)
  • Formaat: 296 pages
  • Ilmumisaeg: 12-Apr-2017
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527674829
  • ISBN-13: 9783527674824
  • Wiley Online
  • Hind: 163,88 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 296 pages
  • Ilmumisaeg: 12-Apr-2017
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527674829
  • ISBN-13: 9783527674824
Over the last 50 years, a variety of techniques have been developed to add a third dimension to regular imaging, with an extended spectrum associated to every imaging pixel. Dubbed 3D spectroscopy from its data format, it is now widely used in the astrophysical domain, but also inter alia for atmospheric sciences and remote sensing purposes. This is the first book to comprehensively tackle these new capabilities. It starts with the fundamentals of spectroscopic instruments, in particular their potentials and limits. It then reviews the various known 3D techniques, with particular emphasis on pinpointing their different `ecological? niches. Putative users are finally led through the whole observing process, from observation planning to the extensive ? and crucial - phase of data reduction. This book overall goal is to give the non-specialist enough hands-on knowledge to learn fast how to properly use and produce meaningful data when using such a 3D capability.
Foreword xi
Acknowledgments xiii
The Emergence of 3D Spectroscopy in Astronomy
1(1)
Scientific Rationale
1(3)
3D History
4(5)
3D Technology
9(2)
Part I 3D Instrumentation
11(140)
1 The Spectroscopic Toolbox
13(48)
1.1 Introduction
13(5)
1.1.1 Geometrical Optics #101
13(2)
1.1.2 Etendue Conservation
15(3)
1.2 Basic Spectroscopic Principles
18(2)
1.2.1 The Spectroscopic Case
18(2)
1.3 Scanning Filters
20(5)
1.3.1 Introduction
20(2)
1.3.2 Interference Filters
22(2)
1.3.3 Fabry-Perot Filter
24(1)
1.4 Dispersers
25(6)
1.4.1 Prisms
25(2)
1.4.2 Grating Principle
27(1)
1.4.3 The Grating Spectrograph
28(1)
1.4.4 Grating Species
29(1)
1.4.5 Grating Etendue
30(1)
1.4.6 Conclusion
31(1)
1.5 2D Detectors
31(5)
1.5.1 Introduction
31(1)
1.5.2 The Photographic Plate
32(1)
1.5.3 2D Optical Detectors
32(3)
1.5.4 2D Infrared Arrays
35(1)
1.5.5 Conclusion
35(1)
1.6 Optics and Coatings
36(9)
1.6.1 Introduction to Optics
36(1)
1.6.2 Optical Computation
37(3)
1.6.3 Optical Fabrication
40(2)
1.6.4 Anti-Reflection Coatings
42(1)
1.6.5 High Reflectivity Coatings
43(1)
1.6.6 Conclusions
44(1)
1.7 Mechanics, Cryogenics and Electronics
45(5)
1.7.1 Mechanical Design
45(3)
1.7.2 Alignments
48(1)
1.7.3 Cryogenics
48(1)
1.7.4 Electronics and Control System
49(1)
1.8 Management, Timeline, and Cost
50(2)
1.9 Conclusion
52(9)
2 Multiobject Spectroscopy
61(20)
2.1 Introduction
61(1)
2.1.1 MOS History: The Pioneers
61(1)
2.1.2 MOS History: The Digital Age
62(1)
2.1.3 MOS Flavors
62(1)
2.2 Slitless Based Multi-Object Spectroscopy
62(2)
2.2.1 Slitless Spectroscopy Concept
62(2)
2.2.2 Slitless Spectroscopic Systems
64(1)
2.3 Multislit-Based Multiobject Spectroscopy
64(6)
2.3.1 Multislit Concept
64(2)
2.3.2 Multislit Holders
66(3)
2.3.3 Multislit Systems
69(1)
2.3.4 Multislit Instruments
70(1)
2.4 Fiber-Based Multiobject Spectroscopy
70(11)
2.4.1 Multifiber Concept
70(1)
2.4.2 Positioning Systems
71(4)
2.4.3 Fiber-Based Spectrograph
75(1)
2.4.4 Fiber Systems Performance
75(1)
2.4.5 Present Multifiber Facilities
76(1)
2.4.6 Conclusion
77(4)
3 Scanning Imaging Spectroscopy
81(14)
3.1 Introduction
81(1)
3.2 Scanning Long-Slit Spectroscopy
81(2)
3.2.1 The Scanning Long-Slit Spectroscopy Concept
81(1)
3.2.2 Astronomical Use
82(1)
3.3 Scanning Fabry-Perot Spectroscopy
83(5)
3.3.1 Introduction
83(1)
3.3.2 Fixed Fabry-Perot Concept
83(2)
3.3.3 Scanning Fabry-Perot
85(3)
3.4 Scanning Fourier Transform Spectroscopy
88(3)
3.4.1 Fourier Transform Spectrometer
88(2)
3.4.2 Fourier Transform Spectrograph
90(1)
3.5 Conclusion: Comparing the Different Scanning Flavors
91(4)
4 Integral Field Spectroscopy
95(20)
4.1 Introduction
95(1)
4.2 Lenslet-Based Integral Field Spectrometer
95(7)
4.3 Fiber-Based Integral Field Spectrometer
102(2)
4.3.1 The Fiber-Based IFS Concept
102(1)
4.3.2 The Fiber-Based IFS Development
103(1)
4.3.3 Conclusion
103(1)
4.4 Slicer-Based Integral Field Spectrograph
104(1)
4.4.1 Introduction
104(3)
4.4.2 Integral Field Spectroscopy from Space
107(1)
4.5 Conclusion: Comparing the Different IFS Flavors
108(7)
5 Recent Trends in Integral Field Spectroscopy
115(14)
5.1 Introduction
115(1)
5.2 High-Contrast Integral Field Spectrometer
115(2)
5.2.1 Exoplanet Detection
115(1)
5.2.2 High-Contrast Integral Field Spectrometer
116(1)
5.3 Wide-Field Integral Field Spectroscopy
117(3)
5.3.1 The Rationale for Wide-Field Integral Field Spectroscopy
117(1)
5.3.2 Current Wide-Field Projects
117(2)
5.3.3 Wide-Field Systems 3D Format
119(1)
5.4 An Example: Autopsy of the MUSE Wide-Field Instrument
120(3)
5.4.1 MUSE Concept
120(1)
5.4.2 MUSE Approach
120(2)
5.4.3 MUSE Conclusions
122(1)
5.4.4 Validity of the Multi-instrument Approach
123(1)
5.5 Deployable Multiobject Integral Field Spectroscopy
123(6)
5.5.1 Concept
123(1)
5.5.2 The First Deployable Integral Field Units System
124(1)
5.5.3 Near Infra-Red Deployable Integral Field Units
124(2)
5.5.4 Deployable Multi-Integral Field Systems: Conclusion
126(3)
6 Comparing the Various 3D Techniques
129(8)
6.1 Introduction
129(1)
6.2 3D Spectroscopy Grasp Invariant Principle
129(1)
6.3 3-D Techniques Practical Differences
130(3)
6.3.1 Packing Efficiency
130(1)
6.3.2 Observational Efficiency
131(2)
6.4 A Tentative Rating
133(4)
7 Future Trends in 3D Spectroscopy
137(14)
7.1 3D Instrumentation for the EEI's
137(1)
7.2 Photonics-Based Spectrograph
138(6)
7.2.1 OH Suppression Filter
138(3)
7.2.2 Photonics Dispersers
141(1)
7.2.3 Photonics Fourier Transform Spectrometer
141(1)
7.2.4 Analysis
142(2)
7.3 Quest for the Grail: Toward 3D Detectors?
144(2)
7.3.1 Introduction
144(1)
7.3.2 Photon-Counting 3D Detectors
144(1)
7.3.3 Integrating 3D Detector
145(1)
7.4 Conclusion
146(1)
7.5 For Further Reading
146(5)
Part II Using 3D Spectroscopy
151(102)
8 Data Properties
153(14)
8.1 Introduction
153(1)
8.2 Data Sampling and Resolution
153(5)
8.2.1 Spatial Sampling and Resolution
154(1)
8.2.2 Spectral Sampling and Resolution
155(3)
8.3 Noise Properties
158(9)
9 Impact of Atmosphere
167(32)
9.1 Introduction
167(1)
9.2 Basic Seeing Principles
168(4)
9.2.1 What is Astronomical Seeing?
168(2)
9.2.2 Seeing Properties
170(2)
9.3 Seeing-Limited Observations
172(1)
9.3.1 Seeing Impact on 3D Instruments
172(1)
9.4 Adaptive Optics Corrected Observations
173(16)
9.4.1 The Need for Overcoming Atmospheric Turbulence
173(1)
9.4.2 Adaptive Optics Correction Principle
173(3)
9.4.3 Adaptive Optics Components
176(2)
9.4.4 Adaptive Optics: The Optical Domain Curse
178(1)
9.4.5 Addressing the Lack of Reference Stars
179(3)
9.4.6 Addressing the Small Field Limitation
182(1)
9.4.7 Large Field Partial AO Correction
183(1)
9.4.8 AO-Based Scanning Interferometers
184(1)
9.4.9 AO-Based Slit Spectrographs
185(1)
9.4.10 AO-Based Integral Field Spectrographs
185(2)
9.4.11 AO-Based Near-IR Multiobject Integral Field Spectrographs
187(1)
9.4.12 Deriving AO-Corrected Point-Spread Functions
188(1)
9.4.13 Conclusion
188(1)
9.4.14 For Further Reading
189(1)
9.5 Other Atmosphere Impacts
189(3)
9.5.1 Atmospheric Extinction
189(1)
9.5.2 Atmospheric Refraction
189(3)
9.5.3 Night Sky Emission
192(1)
9.6 Space-Based Observations
192(2)
9.6.1 The Case for Space-Based Observations
192(1)
9.6.2 Why all Telescopes are not Space Telescopes
193(1)
9.7 Conclusion
194(5)
10 Data Gathering
199(14)
10.1 Introduction
199(1)
10.2 Planning Observations
199(1)
10.3 Estimating Observing Time
200(4)
10.4 Observing Strategy
204(2)
10.5 At the Telescope
206(3)
10.6 Conclusion
209(4)
11 Data Reduction
213(24)
11.1 Introduction
213(1)
11.2 Basics
214(2)
11.3 Specific Cases
216(1)
11.3.1 Slitless Multiobject Spectrograph
216(1)
11.3.2 Scanning Fabry-Perot Spectrograph
216(1)
11.3.3 Scanning Fourier Transform Spectrograph
217(1)
11.3.4 Getting Noise Variance Estimation
217(1)
11.3.5 Minimizing Systematics
218(1)
11.4 Data Reduction Example: The MUSE Scheme
219(17)
11.4.1 Detector Calibration
221(1)
11.4.2 Flat-Field Calibrations and Trace Mask
222(2)
11.4.3 Wavelength Calibrations
224(1)
11.4.4 Geometrical Calibration
225(1)
11.4.5 Basic Science Extraction and Pixel Tables
226(1)
11.4.6 Differential Atmospheric Correction
226(2)
11.4.7 Sky Subtraction
228(1)
11.4.8 Spectrophotometric and Astrometric Calibrations
229(3)
11.4.9 Data-Cube Creation
232(1)
11.4.10 Data Quality
233(3)
11.5 Conclusion
236(1)
12 Data Analysis
237(4)
12.1 Introduction
237(1)
12.2 Handling Data Cubes
237(3)
12.2.1 The Spectral View
238(1)
12.2.2 The Spatial View
239(1)
12.2.3 The 3D View
239(1)
12.3 Viewing Data Cubes
240(1)
12 A Conclusion
241(4)
12.5 Further Reading
243(2)
13 Conclusions
245(8)
13.1 Conclusions
245(1)
13.2 General-Use Instruments
245(5)
13.3 Team-Use Instruments
250(1)
13.4 The Bumpy Road to Success
251(2)
References 253(16)
Index 269
Roland Bacon is astrophysicist, directeur de recherche au CNRS and former director of the Lyon Observatory (1994-2004). He has played a pioneering role in the development of integral field spectroscopy as leader of 4 major and innovative instruments for ground based telescope: TIGER and OASIS at the 3.6m Canada France Hawaii telescope, SAURON at the 4.2m William Herschel telescope and MUSE at the 8m ESO Very Large Telescope. His main research field is extragalactic astronomy. He is the owner since 2014 of an advanced grant from the European Research Commission.

Guy Monnet is an astrophysicist, with 50-year experience of developing astronomical instrumentation, on the ground and in space, mostly with a 3D spectroscopic flavor. Successively, he was director of the Marseilles Observatory, Lyon Observatory and the Canada France Hawaii Telescope Corporation. He then took the position of Head of Instrumentation at the European Southern Observatory (1995-2009) and the Australian Astrophysical Observatory (2010-2011). His main scientific domain is the dynamics of stars and ionized gas in galaxies.