Preface |
|
iii | |
Authors' Biographies |
|
xi | |
Section I: Essential Mathematics and Software |
|
|
|
2 | (20) |
|
1.1 Distance Formula for Points in the Plane |
|
|
2 | (1) |
|
1.2 Circle Centered at the Origin |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.5 Parallel and Perpendicular Lines |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.10 Even and Odd Functions-Symmetry |
|
|
5 | (1) |
|
1.11 Piecewise Defined Functions |
|
|
6 | (1) |
|
|
6 | (2) |
|
1.13 Average Rate of Change and Secant Lines |
|
|
8 | (1) |
|
|
8 | (2) |
|
1.14.1 Lipschitz Continuity |
|
|
9 | (1) |
|
1.15 Slope of a Curvilinear Function |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.17 Derivative of the Function |
|
|
11 | (1) |
|
1.18 Differentiable in Interval |
|
|
12 | (1) |
|
1.19 Extreme Values of Functions |
|
|
13 | (1) |
|
1.20 Local and Absolute (Global) Extrema |
|
|
13 | (2) |
|
1.21 Increasing Functions and Decreasing Functions |
|
|
15 | (1) |
|
1.22 Tests Based on First Derivative |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (2) |
|
1.25 Linearization Approximation |
|
|
20 | (2) |
|
2 Matrix and Determinant Algebra |
|
|
22 | (14) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
2.3.1 Addition and Subtraction of Matrix |
|
|
23 | (1) |
|
2.3.2 Multiplication by a Scalar |
|
|
23 | (1) |
|
2.3.3 Matrix Multiplication |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.10 Determinants and Non-Singularity |
|
|
26 | (2) |
|
2.11 Three Order Determinants |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (5) |
|
|
31 | (1) |
|
2.13.2 Normed Linear Spaces |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
2.13.5 Eigenvalues Vectors |
|
|
34 | (2) |
|
3 LINGO-18: Optimization Software |
|
|
36 | (10) |
|
|
36 | (10) |
|
3.1.1 Key Benefits of LINGO |
|
|
36 | (1) |
|
|
37 | (1) |
|
3.1.3 Window Types in LINGO |
|
|
37 | (1) |
|
3.1.4 Model Creation and Solution in LINGO |
|
|
38 | (4) |
|
3.1.5 Logical Operators and Set Looping Functions |
|
|
42 | (1) |
|
3.1.6 Variable Domain Functions |
|
|
43 | (1) |
|
|
44 | (2) |
Section II: Optimization |
|
|
4 Introduction to Optimization |
|
|
46 | (22) |
|
|
46 | (1) |
|
4.1.1 Unconstrained vs Constrained |
|
|
46 | (1) |
|
4.1.2 Linear vs Non-Linear |
|
|
47 | (1) |
|
|
47 | (4) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
4.3 Convex and Concave Properties |
|
|
51 | (1) |
|
4.4 Convex Optimization Problems |
|
|
52 | (1) |
|
4.5 Concave Maximization Problem |
|
|
52 | (4) |
|
4.5.1 Quasi Concave & Quasi Convex Function |
|
|
53 | (3) |
|
4.5.1.1 Properties of Quasi Concave Functions |
|
|
54 | (2) |
|
4.6 Convexity of Smooth Function |
|
|
56 | (3) |
|
4.6.1 Quasi Concavity of Smooth Function |
|
|
57 | (1) |
|
4.6.2 Pseudo Concave Function |
|
|
57 | (1) |
|
4.6.3 Pseudo Convex Function |
|
|
57 | (1) |
|
|
58 | (1) |
|
4.6.5 Hyperplanes and Half Spaces |
|
|
58 | (1) |
|
4.7 Univariate Optimization Problems |
|
|
59 | (2) |
|
4.7.1 Optimality Condition |
|
|
59 | (2) |
|
4.8 Multivariate Optimization Problems |
|
|
61 | (4) |
|
4.8.1 Optimality Condition |
|
|
61 | (4) |
|
4.9 Gradient Vector off(x) |
|
|
65 | (3) |
|
4.9.1 Hessian Matrix off(x) |
|
|
65 | (3) |
|
5 Linear Optimization Problems |
|
|
68 | (47) |
|
|
68 | (1) |
|
5.2 General Form of LP Model |
|
|
69 | (3) |
|
5.2.1 Components of LP Model |
|
|
69 | (1) |
|
|
69 | (1) |
|
5.2.3 General Mathematical Model |
|
|
70 | (2) |
|
5.2.4 Properties of Solution to an LPP |
|
|
72 | (1) |
|
5.3 Formulation of an LPP |
|
|
72 | (5) |
|
5.3.1 Product Mix Problem |
|
|
72 | (2) |
|
5.3.2 Resource Allocation Problem |
|
|
74 | (1) |
|
|
74 | (1) |
|
5.3.4 The Capital Budgeting Problem |
|
|
75 | (1) |
|
|
76 | (1) |
|
5.3.6 Transportation Problem |
|
|
77 | (1) |
|
|
77 | (1) |
|
5.5 Graphical Solution of LPP |
|
|
78 | (5) |
|
5.6 Theory of Simplex Method |
|
|
83 | (8) |
|
|
83 | (1) |
|
5.6.2 Computational Procedure of Simplex Method |
|
|
84 | (2) |
|
5.6.3 Maximization Problem |
|
|
86 | (2) |
|
5.6.4 Degeneracy and Cycling in LPP |
|
|
88 | (1) |
|
5.6.5 Artificial Basis Technique |
|
|
88 | (1) |
|
5.6.6 Minimization Problem |
|
|
89 | (2) |
|
5.7 Solving LPP using LINGO-18 |
|
|
91 | (11) |
|
5.7.1 Product Mix Profit Maximization Problem |
|
|
92 | (1) |
|
5.7.2 Product Sales through Advertisement Problem |
|
|
93 | (1) |
|
5.7.3 Profit Maximization Problem |
|
|
94 | (1) |
|
5.7.4 Total Production Cost Minimization Problem |
|
|
95 | (2) |
|
5.7.5 Product Manufacturing Problem |
|
|
97 | (1) |
|
5.7.6 Product Manufacturing Problem |
|
|
97 | (1) |
|
5.7.7 Production Cost Minimization Problem |
|
|
98 | (2) |
|
5.7.8 Profit Maximization Problem |
|
|
100 | (1) |
|
5.7.9 Cost Minimization Problem |
|
|
101 | (1) |
|
5.8 Concept of Duality in LPP |
|
|
102 | (13) |
|
5.8.1 Conversion of Primal to Dual |
|
|
103 | (3) |
|
5.8.2 Importance of Duality Concepts |
|
|
106 | (3) |
|
5.8.3 Properties of Primal-dual LPPs |
|
|
109 | (1) |
|
5.8.4 Economic Interpretation of Duality |
|
|
109 | (2) |
|
|
111 | (4) |
|
6 Non-Linear Optimization Problems |
|
|
115 | (26) |
|
|
115 | (2) |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
117 | (1) |
|
6.3 Kuhn-Tucker Conditions |
|
|
118 | (1) |
|
6.4 Solution of Non-Linear Optimization Problems using LINGO-18 |
|
|
119 | (3) |
|
6.5 Quadratic Programming |
|
|
122 | (7) |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
126 | (3) |
|
6.6 Solution of Quadratic Programming Problems using LINGO-18 |
|
|
129 | (2) |
|
|
131 | (7) |
|
6.7.1 A Feasible Direction |
|
|
131 | (1) |
|
6.7.2 A Usable Feasible Direction |
|
|
131 | (1) |
|
6.7.3 An Outline of the Methods of Feasible Directions |
|
|
132 | (1) |
|
6.7.4 Rosen's Gradient Projection Method |
|
|
132 | (3) |
|
|
135 | (3) |
|
6.8 Solution of Convex Programming Problems using LINGO-18 |
|
|
138 | (3) |
|
7 Optimization Under Uncertainty |
|
|
141 | (35) |
|
|
141 | (1) |
|
|
141 | (10) |
|
|
141 | (2) |
|
7.2.2 Operations of Fuzzy Sets |
|
|
143 | (2) |
|
7.2.3 Cardinality of Fuzzy Set |
|
|
145 | (6) |
|
7.2.3.1 Scalar Cardinality |
|
|
145 | (1) |
|
7.2.3.2 Relative Cardinality |
|
|
145 | (4) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (2) |
|
|
151 | (1) |
|
7.3.1 Triangular Fuzzy Number |
|
|
151 | (1) |
|
7.3.2 Trapezoidal Fuzzy Number |
|
|
151 | (1) |
|
7.4 Defuzzification Methods |
|
|
152 | (4) |
|
7.4.1 Center of Sums Method |
|
|
152 | (2) |
|
7.4.2 Center of Gravity Method |
|
|
154 | (1) |
|
|
155 | (1) |
|
7.5 Solving Optimization Problem with Fuzzy Numbers using LINGO-18 |
|
|
156 | (5) |
|
7.5.1 Case I: When Coefficients in Objective Function are Fuzzy Numbers |
|
|
157 | (1) |
|
7.5.2 Case II: When Constraint Coefficients are Fuzzy Numbers |
|
|
158 | (1) |
|
7.5.3 Case III: When RHS Parameters are Fuzzy Numbers |
|
|
159 | (2) |
|
7.6 Stochastic Optimization Problem |
|
|
161 | (6) |
|
7.6.1 Situation I: Parameters in Objective Function Cj are Random Variables |
|
|
161 | (1) |
|
7.6.2 Situation II: Availability/Requirement Vector bi are Probabilistic |
|
|
162 | (2) |
|
7.6.3 Situation III: When aii are Random Variables |
|
|
164 | (1) |
|
7.6.4 Situation IV: General Case-All Parameters are Random Variables |
|
|
165 | (2) |
|
7.7 Some Numerical Examples using LINGO-18 |
|
|
167 | (3) |
|
7.8 Interval Optimization Problem |
|
|
170 | (6) |
|
|
170 | (1) |
|
7.8.2 Interval Arithmetic |
|
|
170 | (1) |
|
7.8.3 Formulation of Interval Optimization Problem |
|
|
171 | (1) |
|
|
172 | (1) |
|
7.8.5 Numerical Example using LINGO-18 |
|
|
173 | (3) |
|
8 Multi-Objective Optimization |
|
|
176 | (24) |
|
|
176 | (5) |
|
8.1.1 Pareto Optimal Solution |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
8.2 Multi-Objective Optimization Techniques |
|
|
181 | (7) |
|
|
181 | (1) |
|
8.2.2 Goal Programming Technique |
|
|
182 | (3) |
|
8.2.2.1 Algorithm of Goal Programming Technique |
|
|
183 | (1) |
|
8.2.2.2 Another Standard Form of GP |
|
|
184 | (1) |
|
8.2.3 Lexicographic Goal Programming Technique |
|
|
185 | (1) |
|
8.2.4 s-Constraints Technique |
|
|
186 | (1) |
|
8.2.5 Fuzzy Goal Programming Technique |
|
|
186 | (2) |
|
8.2.6 Fuzzy Goal Programming with Tolerance |
|
|
188 | (1) |
|
8.3 Numerical Example using LINGO-18 |
|
|
188 | (8) |
|
8.3.1 Solution through Weighted Technique |
|
|
189 | (1) |
|
8.3.2 Solution through Goal Programming Technique |
|
|
190 | (1) |
|
8.3.3 Solution through Lexicographic Goal Programming Technique |
|
|
191 | (1) |
|
8.3.4 Solution through s-Constraints Technique |
|
|
192 | (1) |
|
8.3.5 Solution through Goal Programming Technique |
|
|
193 | (2) |
|
8.3.6 Solution through Fuzzy Goal Programming Technique |
|
|
195 | (1) |
|
8.4 Multi-Objective Optimization Problem with Fuzzy Numbers |
|
|
196 | (1) |
|
|
197 | (1) |
|
8.5 Numerical Example using LINGO-18 |
|
|
197 | (3) |
|
9 Applications of Optimization |
|
|
200 | (30) |
|
9.1 Optimization Problems in Finance |
|
|
200 | (6) |
|
9.2 Optimization Problems in Marketing |
|
|
206 | (6) |
|
9.3 Optimization Problems in Human Resource Management |
|
|
212 | (2) |
|
9.4 Vendor Selection Optimization Problem |
|
|
214 | (3) |
|
9.5 Diet Optimization Problem |
|
|
217 | (4) |
|
9.6 Operations Management Optimization Problems |
|
|
221 | (4) |
|
9.7 Transportation Optimization Problem |
|
|
225 | (2) |
|
9.8 Assignment Optimization Problem |
|
|
227 | (3) |
References |
|
230 | (3) |
Index |
|
233 | |