Preface |
|
xiii | |
Symbols |
|
xv | |
About the Companion Website |
|
xvii | |
Part I: The Finite Element Method with Matlab |
|
1 | (118) |
|
|
3 | (10) |
|
|
3 | (1) |
|
1.2 Boundary and Initial Conditions |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (2) |
|
1.5 Numerical Solution Methods |
|
|
7 | (1) |
|
|
8 | (2) |
|
|
10 | (2) |
|
|
12 | (1) |
|
2 Beginning with the Finite Element Method |
|
|
13 | (12) |
|
|
13 | (1) |
|
2.2 Approximating the Continuous Variable |
|
|
14 | (1) |
|
2.3 Minimizing the Residual |
|
|
15 | (2) |
|
2.4 Evaluating the Element Matrices |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
2.7 Boundary and Initial Conditions |
|
|
21 | (1) |
|
2.8 Solution of the Algebraic Equations |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (2) |
|
3 Programming the Finite Element Method in Matlab |
|
|
25 | (10) |
|
3.1 Program Structure and Philosophy |
|
|
25 | (1) |
|
3.2 Summary of the Problem |
|
|
25 | (1) |
|
3.3 Discretized Equations |
|
|
26 | (1) |
|
|
27 | (3) |
|
|
27 | (2) |
|
|
29 | (1) |
|
3.4.3 Postprocessor Stage |
|
|
30 | (1) |
|
|
30 | (3) |
|
|
33 | (1) |
|
|
34 | (1) |
|
4 Numerical Integration and Local Coordinates |
|
|
35 | (14) |
|
4.1 Gauss-Legendre Quadrature |
|
|
36 | (1) |
|
|
37 | (2) |
|
4.3 Evaluating the Integrals |
|
|
39 | (1) |
|
4.4 Variable Material Properties |
|
|
40 | (1) |
|
4.5 Programming Considerations |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (2) |
|
5 The Finite Element Method in Two Dimensions |
|
|
49 | (18) |
|
|
50 | (2) |
|
5.2 Geometry and Nodal Connectivity |
|
|
52 | (2) |
|
5.3 Integration of Element Matrices |
|
|
54 | (3) |
|
5.4 Multielement Assembly |
|
|
57 | (3) |
|
5.5 Boundary Conditions and Solution |
|
|
60 | (1) |
|
|
61 | (4) |
|
|
65 | (1) |
|
|
66 | (1) |
|
6 The Finite Element Method in Three Dimensions |
|
|
67 | (14) |
|
|
67 | (2) |
|
|
69 | (3) |
|
6.3 Assembly for Multielement Mesh |
|
|
72 | (1) |
|
6.4 Boundary Conditions and Solution |
|
|
73 | (1) |
|
|
74 | (5) |
|
|
79 | (1) |
|
|
80 | (1) |
|
7 Generalization of Finite Element Concepts |
|
|
81 | (38) |
|
7.1 The FEM for an Elliptic Problem |
|
|
84 | (12) |
|
7.2 The FEM for a Hyperbolic Problem |
|
|
96 | (6) |
|
7.3 The FEM for Systems of Equations |
|
|
102 | (14) |
|
|
116 | (1) |
|
|
116 | (3) |
Part II: Applications of the Finite Element Method in Earth Science |
|
119 | (98) |
|
|
121 | (16) |
|
8.1 Conductive Cooling in an Eroding Crust |
|
|
122 | (4) |
|
8.2 Conductive Cooling of an Intrusion |
|
|
126 | (9) |
|
|
135 | (2) |
|
|
137 | (14) |
|
9.1 Evolution of a 1D River Profile |
|
|
138 | (5) |
|
9.2 Evolution of a Fluvially Dissected Landscape |
|
|
143 | (7) |
|
|
150 | (1) |
|
10 Fluid Flow in Porous Media |
|
|
151 | (16) |
|
10.1 Fluid Flow Around a Fault |
|
|
152 | (5) |
|
|
157 | (9) |
|
|
166 | (1) |
|
|
167 | (16) |
|
|
167 | (1) |
|
|
168 | (3) |
|
11.3 Matlab Implementation |
|
|
171 | (10) |
|
|
181 | (2) |
|
12 Deformation of Earth's Crust |
|
|
183 | (24) |
|
|
183 | (2) |
|
|
185 | (1) |
|
|
186 | (2) |
|
12.4 Viscoelastoplasticity |
|
|
188 | (2) |
|
12.5 Matlab Implementation |
|
|
190 | (15) |
|
|
205 | (2) |
|
|
207 | (10) |
|
|
207 | (6) |
|
|
213 | (2) |
|
13.3 Use of Existing Finite Element Software |
|
|
215 | (2) |
Appendix A: Derivation of the Diffusion Equation |
|
217 | (4) |
Appendix B: Basics of Linear Algebra with Matlab |
|
221 | (6) |
Appendix C: Comparison between Different Numerical Methods |
|
227 | (10) |
Appendix D: Integration by Parts |
|
237 | (2) |
Appendix E: Time Discretization |
|
239 | (2) |
References |
|
241 | (4) |
Index |
|
245 | |