Muutke küpsiste eelistusi

E-raamat: Practical Mathematical Cryptography [Taylor & Francis e-raamat]

  • Formaat: 534 pages, 3 Tables, black and white; 61 Line drawings, color; 9 Line drawings, black and white; 61 Illustrations, color; 9 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Cryptography and Network Security Series
  • Ilmumisaeg: 17-Aug-2022
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781003149422
  • Taylor & Francis e-raamat
  • Hind: 133,87 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 191,24 €
  • Säästad 30%
  • Formaat: 534 pages, 3 Tables, black and white; 61 Line drawings, color; 9 Line drawings, black and white; 61 Illustrations, color; 9 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Cryptography and Network Security Series
  • Ilmumisaeg: 17-Aug-2022
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781003149422
"Practical Mathematical Cryptography provides a clear and accessible introduction to practical mathematical cryptography. Cryptography, both as a science and as practice, lies at the intersection of mathematics and the science of computation, and the presentation emphasises the essential mathematical nature of the computations and arguments involved in cryptography. Cryptography is also a practical science, and the book shows how modern cryptography solves important practical problems in the real world, developing the theory and practice of cryptography from the basics to secure messaging and voting. The presentation provides a unified and consistent treatment of the most important cryptographic topics, from the initial design and analysis of basic cryptographic schemes towards applications. Features Builds from theory toward practical applications Suitable as the main text for a mathematical cryptography course Focus on secure messaging and voting systems"--

This book provides a clear and accessible introduction to practical mathematical cryptography. The presentation provides a unified and consistent treatment of the most important cryptographic topics, from the initial design and analysis of basic cryptographic schemes towards applications.

Preface ix
Chapter 1 Symmetric Cryptography
1(24)
1.1 Definitions
2(1)
1.2 Confidentiality Against Eavesdroppers
2(17)
1.3 Integrity
19(3)
1.4 Confidentiality and Integrity
22(1)
1.5 The Key Distribution Problem
23(2)
Chapter 2 Key Exchange and Diffie-Hellman
25(48)
2.1 The Diffie-Hellman Protocol
26(3)
2.2 Discrete Logarithms
29(15)
2.3 Primality Testing
44(5)
2.4 Finite Fields
49(9)
2.5 Elliptic Curves
58(13)
2.6 Active Attacks
71(2)
Chapter 3 Public Key Encryption
73(44)
3.1 Definitions
74(1)
3.2 Schemes Based on Diffie-Hellman
75(4)
3.3 Rsa
79(8)
3.4 Factoring Integers
87(9)
3.5 Lattices
96(8)
3.6 Lattice-Based Cryptosystems
104(5)
3.7 Lattice Algorithms
109(6)
3.8 The Public Key Infrastructure Problem
115(2)
Chapter 4 Digital Signatures
117(20)
4.1 Definitions
118(1)
4.2 Hash Functions
118(5)
4.3 Rsa Signatures
123(3)
4.4 Schnorr Signatures
126(4)
4.5 Hash-Based Signatures
130(4)
4.6 Securing Diffie-Hellman
134(1)
4.7 The Public Key Infrastructure Problem
135(2)
Chapter 5 Factoring Using Quantum Computers
137(10)
5.1 Background
137(5)
5.2 Quantum Computation
142(3)
5.3 Factoring Using a Quantum Computer
145(2)
Chapter 6 Computational Problems
147(12)
6.1 Definitions
147(4)
6.2 Statistical Distance
151(2)
6.3 Diffie-Hellman
153(1)
6.4 Rsa
154(1)
6.5 Lattice Problems
155(4)
Chapter 7 Symmetric Cryptography
159(54)
7.1 Defining Security
160(27)
7.2 Confidentiality and Underlying Primitives
187(7)
7.3 Message Authentication Codes
194(7)
7.4 Channels
201(5)
7.5 Hash Functions
206(3)
7.6 Ideal Models
209(4)
Chapter 8 Public Key Encryption
213(64)
8.1 Defining Security
213(22)
8.2 Key Encapsulation Mechanisms
235(16)
8.3 Homomorphic Encryption
251(8)
8.4 Commitment Schemes
259(6)
8.5 Cryptographic Voting
265(12)
Chapter 9 Digital Signatures
277(54)
9.1 Defining Security
277(15)
9.2 Hash and Sign Paradigm
292(18)
9.3 Identification Schemes
310(18)
9.4 Messaging
328(3)
Chapter 10 Key Exchange
331(48)
10.1 Key Exchange Protocols
331(6)
10.2 Defining Security
337(30)
10.3 Key Exchange from Key Encapsulation
367(5)
10.4 Single-Message Key Exchange
372(1)
10.5 Single-Sided Authentication
373(2)
10.6 Continuous Key Exchange
375(4)
Chapter 11 Arguments
379(50)
11.1 Arguments
380(18)
11.2 Non-Interactive Arguments
398(4)
11.3 Using Hvzk
402(7)
11.4 Further Useful Arguments
409(20)
Chapter 12 Multi-party Computation
429(30)
12.1 Secret Sharing
430(14)
12.2 Multi-Party Computation
444(9)
12.3 Distributed Decryption
453(6)
Chapter 13 Messaging Protocols
459(30)
13.1 Messaging Protocols
460(7)
13.2 Defining Security
467(15)
13.3 Invasive Adversaries
482(4)
13.4 Somewhat Anonymous Messaging
486(3)
Chapter 14 Cryptographic Voting
489(36)
14.1 Definitions
490(12)
14.2 How to Use a Voting Scheme
502(7)
14.3 Cast as Intended
509(5)
14.4 Coercion Resistance
514(11)
Index 525
Kristian Gjosteen is a professor of mathematical cryptography at NTNU Norwegian University of Science and Technology. Gjosteen has worked on cryptographic voting, electronic identification, privacy, public key encryption and key exchange.