Preface |
|
xiii | |
Acronyms |
|
xv | |
1 Introduction |
|
1 | (28) |
|
|
3 | (4) |
|
|
4 | (1) |
|
|
5 | (2) |
|
1.2 Prerequisites of Quantum Computing |
|
|
7 | (9) |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.2.3 Quantum Superposition |
|
|
8 | (1) |
|
|
9 | (5) |
|
1.2.4.1 Quantum NOT Gate (Matrix Representation) |
|
|
9 | (1) |
|
1.2.4.2 Quantum Z Gate (Matrix Representation) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.2.4.5 Controlled NOT Gate (CNOT) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.4.9 Quantum Rotation Gate |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.2.6 Quantum Entanglement |
|
|
14 | (1) |
|
1.2.7 Quantum Solutions of NP-complete Problems |
|
|
15 | (1) |
|
|
16 | (3) |
|
1.3.1 Single-objective Optimization |
|
|
16 | (2) |
|
1.3.2 Multi-objective Optimization |
|
|
18 | (1) |
|
1.3.3 Application of Optimization to Image Analysis |
|
|
18 | (1) |
|
1.4 Related Literature Survey |
|
|
19 | (4) |
|
1.4.1 Quantum-based Approaches |
|
|
19 | (2) |
|
1.4.2 Meta-heuristic-based Approaches |
|
|
21 | (1) |
|
1.4.3 Multi-objective-based Approaches |
|
|
22 | (1) |
|
1.5 Organization of the Book |
|
|
23 | (2) |
|
1.5.1 Quantum Inspired Meta-heuristics for Bi-level Image Thresholding |
|
|
24 | (1) |
|
1.5.2 Quantum Inspired Meta-heuristics for Gray-scale Multi-level Image Thresholding |
|
|
24 | (1) |
|
1.5.3 Quantum Behaved Meta-heuristics for True Color Multi-level Thresholding |
|
|
24 | (1) |
|
1.5.4 Quantum Inspired Multi-objective Algorithms for Multi-level Image Thresholding |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (3) |
2 Review of Image Analysis |
|
29 | (22) |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.3 Mathematical Formalism |
|
|
30 | (1) |
|
|
30 | (5) |
|
2.4.1 Digital Image Analysis Methodologies |
|
|
31 | (4) |
|
2.4.1.1 Image Segmentation |
|
|
31 | (1) |
|
2.4.1.2 Feature Extraction/Selection |
|
|
32 | (2) |
|
|
34 | (1) |
|
2.5 Overview of Different Thresholding Techniques |
|
|
35 | (11) |
|
|
35 | (1) |
|
2.5.2 Shanbag's Algorithm |
|
|
36 | (1) |
|
2.5.3 Correlation Coefficient |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
2.5.8 Johannsen's Algorithm |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (2) |
|
|
43 | (1) |
|
2.5.13 Kittler's Algorithm |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
2.6 Applications of Image Analysis |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (3) |
3 Overview of Meta-heuristics |
|
51 | (18) |
|
|
51 | (1) |
|
3.1.1 Impact on Controlling Parameters |
|
|
52 | (1) |
|
|
52 | (4) |
|
3.2.1 Fundamental Principles and Features |
|
|
53 | (1) |
|
3.2.2 Pseudo-code of Genetic Algorithms |
|
|
53 | (1) |
|
3.2.3 Encoding Strategy and the Creation of Population |
|
|
54 | (1) |
|
3.2.4 Evaluation Techniques |
|
|
54 | (1) |
|
|
54 | (1) |
|
3.2.6 Selection Mechanism |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
3.3 Particle Swarm Optimization |
|
|
56 | (2) |
|
3.3.1 Pseudo-code of Particle Swarm Optimization |
|
|
57 | (1) |
|
3.3.2 PSO: Velocity and Position Update |
|
|
57 | (1) |
|
3.4 Ant Colony Optimization |
|
|
58 | (2) |
|
3.4.1 Stigmergy in Ants: Biological Inspiration |
|
|
58 | (1) |
|
3.4.2 Pseudo-code of Ant Colony Optimization |
|
|
59 | (1) |
|
|
59 | (1) |
|
3.4.4 Updating Pheromone Trails |
|
|
59 | (1) |
|
3.5 Differential Evolution |
|
|
60 | (2) |
|
3.5.1 Pseudo-code of Differential Evolution |
|
|
60 | (1) |
|
3.5.2 Basic Principles of DE |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
3.6.1 Pseudo-code of Simulated Annealing |
|
|
62 | (1) |
|
3.6.2 Basics of Simulated Annealing |
|
|
63 | (1) |
|
|
64 | (1) |
|
3.7.1 Pseudo-code of Tabu Search |
|
|
64 | (1) |
|
3.7.2 Memory Management in Tabu Search |
|
|
65 | (1) |
|
3.7.3 Parameters Used in Tabu Search |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (3) |
4 Quantum Inspired Meta-heuristics for Bi-level Image Thresholding |
|
69 | (56) |
|
|
69 | (1) |
|
4.2 Quantum Inspired Genetic Algorithm |
|
|
70 | (6) |
|
4.2.1 Initialize the Population of Qubit Encoded Chromosomes |
|
|
71 | (1) |
|
4.2.2 Perform Quantum Interference |
|
|
72 | (2) |
|
4.2.2.1 Generate Random Chaotic Map for Each Qubit State |
|
|
72 | (1) |
|
4.2.2.2 Initiate Probabilistic Switching Between Chaotic Maps |
|
|
73 | (1) |
|
4.2.3 Find the Threshold Value in Population and Evaluate Fitness |
|
|
74 | (1) |
|
4.2.4 Apply Selection Mechanism to Generate a New Population |
|
|
74 | (1) |
|
4.2.5 Foundation of Quantum Crossover |
|
|
74 | (1) |
|
4.2.6 Foundation of Quantum Mutation |
|
|
74 | (1) |
|
4.2.7 Foundation of Quantum Shift |
|
|
75 | (1) |
|
4.2.8 Complexity Analysis |
|
|
75 | (1) |
|
4.3 Quantum Inspired Particle Swarm Optimization |
|
|
76 | (1) |
|
4.3.1 Complexity Analysis |
|
|
77 | (1) |
|
4.4 Implementation Results |
|
|
77 | (43) |
|
4.4.1 Experimental Results (Phase I) |
|
|
79 | (17) |
|
4.4.1.1 Implementation Results for QEA |
|
|
91 | (5) |
|
4.4.2 Experimental Results (Phase II) |
|
|
96 | (18) |
|
4.4.2.1 Experimental Results of Proposed QIGA and Conventional GA |
|
|
96 | (1) |
|
4.4.2.2 Results Obtained with QEA |
|
|
96 | (18) |
|
4.4.3 Experimental Results (Phase III) |
|
|
114 | (12) |
|
4.4.3.1 Results Obtained with Proposed QIGA and Conventional GA |
|
|
114 | (3) |
|
4.4.3.2 Results obtained from QEA |
|
|
117 | (3) |
|
4.5 Comparative Analysis among the Participating Algorithms |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (2) |
|
|
123 | (2) |
5 Quantum Inspired Meta-Heuristics for Gray-Scale Multi-Level Image Thresholding |
|
125 | (70) |
|
|
125 | (1) |
|
5.2 Quantum Inspired Genetic Algorithm |
|
|
126 | (4) |
|
5.2.1 Population Generation |
|
|
126 | (1) |
|
5.2.2 Quantum Orthogonality |
|
|
127 | (1) |
|
5.2.3 Determination of Threshold Values in Population and Measurement of Fitness |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
5.2.7 Complexity Analysis |
|
|
129 | (1) |
|
5.3 Quantum Inspired Particle Swarm Optimization |
|
|
130 | (1) |
|
5.3.1 Complexity Analysis |
|
|
131 | (1) |
|
5.4 Quantum Inspired Differential Evolution |
|
|
131 | (2) |
|
5.4.1 Complexity Analysis |
|
|
132 | (1) |
|
5.5 Quantum Inspired Ant Colony Optimization |
|
|
133 | (1) |
|
5.5.1 Complexity Analysis |
|
|
133 | (1) |
|
5.6 Quantum Inspired Simulated Annealing |
|
|
134 | (2) |
|
5.6.1 Complexity Analysis |
|
|
136 | (1) |
|
5.7 Quantum Inspired Tabu Search |
|
|
136 | (1) |
|
5.7.1 Complexity Analysis |
|
|
136 | (1) |
|
5.8 Implementation Results |
|
|
137 | (8) |
|
5.8.1 Consensus Results of the Quantum Algorithms |
|
|
142 | (3) |
|
5.9 Comparison of QIPSO with Other Existing Algorithms |
|
|
145 | (20) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (23) |
|
|
190 | (5) |
6 Quantum Behaved Meta-Heuristics for True Color Multi-Level Image Thresholding |
|
195 | (106) |
|
|
195 | (1) |
|
|
196 | (1) |
|
6.3 Quantum Inspired Ant Colony Optimization |
|
|
196 | (1) |
|
6.3.1 Complexity Analysis |
|
|
197 | (1) |
|
6.4 Quantum Inspired Differential Evolution |
|
|
197 | (3) |
|
6.4.1 Complexity Analysis |
|
|
200 | (1) |
|
6.5 Quantum Inspired Particle Swarm Optimization |
|
|
200 | (1) |
|
6.5.1 Complexity Analysis |
|
|
200 | (1) |
|
6.6 Quantum Inspired Genetic Algorithm |
|
|
201 | (2) |
|
6.6.1 Complexity Analysis |
|
|
203 | (1) |
|
6.7 Quantum Inspired Simulated Annealing |
|
|
203 | (1) |
|
6.7.1 Complexity Analysis |
|
|
204 | (1) |
|
6.8 Quantum Inspired Tabu Search |
|
|
204 | (3) |
|
6.8.1 Complexity Analysis |
|
|
206 | (1) |
|
6.9 Implementation Results |
|
|
207 | (87) |
|
6.9.1 Experimental Results (Phase I) |
|
|
209 | (16) |
|
6.9.1.1 The Stability of the Comparable Algorithms |
|
|
210 | (15) |
|
6.9.2 The Performance Evaluation of the Comparable Algorithms of Phase I |
|
|
225 | (10) |
|
6.9.3 Experimental Results (Phase II) |
|
|
235 | (1) |
|
6.9.4 The Performance Evaluation of the Participating Algorithms of Phase II |
|
|
235 | (59) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (5) |
7 Quantum Inspired Multi-objective Algorithms for Multi-level Image Thresholding |
|
301 | (32) |
|
|
301 | (1) |
|
7.2 Multi-objective Optimization |
|
|
302 | (1) |
|
7.3 Experimental Methodology for Gray-Scale Multi-Level Image Thresholding |
|
|
303 | (8) |
|
7.3.1 Quantum Inspired Non-dominated Sorting-Based Multi-objective Genetic Algorithm |
|
|
303 | (2) |
|
7.3.2 Complexity Analysis |
|
|
305 | (1) |
|
7.3.3 Quantum Inspired Simulated Annealing for Multi-objective Algorithms |
|
|
305 | (3) |
|
7.3.3.1 Complexity Analysis |
|
|
307 | (1) |
|
7.3.4 Quantum Inspired Multi-objective Particle Swarm Optimization |
|
|
308 | (1) |
|
7.3.4.1 Complexity Analysis |
|
|
309 | (1) |
|
7.3.5 Quantum Inspired Multi-objective Ant Colony Optimization |
|
|
309 | (2) |
|
7.3.5.1 Complexity Analysis |
|
|
310 | (1) |
|
7.4 Implementation Results |
|
|
311 | (16) |
|
7.4.1 Experimental Results |
|
|
311 | (16) |
|
7.4.1.1 The Results of Multi-Level Thresholding for QINSGA-II, NSGA-II, and SMS-EMOA |
|
|
312 | (1) |
|
7.4.1.2 The Stability of the Comparable Methods |
|
|
312 | (3) |
|
7.4.1.3 Performance Evaluation |
|
|
315 | (12) |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (4) |
8 Conclusion |
|
333 | (4) |
Bibliography |
|
337 | (18) |
Index |
|
355 | |