Muutke küpsiste eelistusi

E-raamat: Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16-19, 2023, Proceedings

Edited by
  • Formaat - PDF+DRM
  • Hind: 40,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 27th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2023, held in Istanbul, Turkey, during April 16–19, 2023.

The 11 regular and 33 short papers presented in this book were carefully reviewed and selected from 188 submissions. The papers report on original research in all areas of computational molecular biology and bioinformatics.
VStrains: De Novo Reconstruction of Viral Strains via Iterative Path
Extraction From Assembly Graphs.- Spectrum preserving tilings enable sparse
and modular reference indexing.- Statistically Consistent Rooting of Species
Trees under the Multispecies Coalescent Model.- Sequence to graph alignment
using gap-sensitive co-linear chaining.- DM-Net: A Dual-Model Network for
Automated Biomedical Image Diagnosis.- MTGL-ADMET: A Novel Multi-Task Graph
Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum
Flow.- CDGCN: Conditional de novo Drug generative model using Graph
Convolution Networks.- Percolate: an exponential family JIVE model to design
DNA-based predictors of drug response.- Translation rate prediction and
regulatory motif discovery with multi-task learning.- Computing shortest
hyperpaths for pathway inference in cellular reaction networks.- T-Cell
Receptor Optimization with Reinforcement Learning and MutationPolices for
Precision Immunotherapy.