Muutke küpsiste eelistusi

Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 1619, 2023, Proceedings 1st ed. 2023 [Pehme köide]

Edited by
  • Formaat: Paperback / softback, 283 pages, kõrgus x laius: 235x155 mm, kaal: 468 g, 63 Illustrations, color; 2 Illustrations, black and white; XVII, 283 p. 65 illus., 63 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13976
  • Ilmumisaeg: 24-Mar-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031291182
  • ISBN-13: 9783031291180
  • Pehme köide
  • Hind: 37,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 44,21 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 283 pages, kõrgus x laius: 235x155 mm, kaal: 468 g, 63 Illustrations, color; 2 Illustrations, black and white; XVII, 283 p. 65 illus., 63 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13976
  • Ilmumisaeg: 24-Mar-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031291182
  • ISBN-13: 9783031291180
This book constitutes the refereed proceedings of the 27th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2023, held in Istanbul, Turkey, during April 16–19, 2023.

The 11 regular and 33 short papers presented in this book were carefully reviewed and selected from 188 submissions. The papers report on original research in all areas of computational molecular biology and bioinformatics.
VStrains: De Novo Reconstruction of Viral Strains via Iterative Path
Extraction From Assembly Graphs.- Spectrum preserving tilings enable sparse
and modular reference indexing.- Statistically Consistent Rooting of Species
Trees under the Multispecies Coalescent Model.- Sequence to graph alignment
using gap-sensitive co-linear chaining.- DM-Net: A Dual-Model Network for
Automated Biomedical Image Diagnosis.- MTGL-ADMET: A Novel Multi-Task Graph
Learning Framework for ADMET Prediction Enhanced by Status-Theory and Maximum
Flow.- CDGCN: Conditional de novo Drug generative model using Graph
Convolution Networks.- Percolate: an exponential family JIVE model to design
DNA-based predictors of drug response.- Translation rate prediction and
regulatory motif discovery with multi-task learning.- Computing shortest
hyperpaths for pathway inference in cellular reaction networks.- T-Cell
Receptor Optimization with Reinforcement Learning and MutationPolices for
Precision Immunotherapy.