Muutke küpsiste eelistusi

E-raamat: Satellite Geodesy: Foundations, Methods, and Applications 2nd compl. rev. and extend. ed [De Gruyter e-raamatud]

  • Formaat: 608 pages, 64 Tables, black and white; 281 Illustrations, black and white
  • Ilmumisaeg: 19-Jun-2003
  • Kirjastus: De Gruyter
  • ISBN-13: 9783110200089
  • De Gruyter e-raamatud
  • Hind: 1 008,00 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 608 pages, 64 Tables, black and white; 281 Illustrations, black and white
  • Ilmumisaeg: 19-Jun-2003
  • Kirjastus: De Gruyter
  • ISBN-13: 9783110200089
This book covers the entire field of satellite geodesy and is intended to serve as a textbook for advanced undergraduate and graduate students, as well as a reference for professionals and scientists in the fields of engineering and geosciences such as geodesy, surveying engineering, geomatics, geography, navigation, geophysics and oceanography.

The text provides a systematic overview of fundamentals including reference systems, time, signal propagation and satellite orbits, together with observation methods such as satellite laser ranging, satellite altimetry, gravity field missions, very long baseline interferometry, Doppler techniques, and Global Navigation Satellite Systems (GNSS). Particular emphasis is given to positioning techniques, such as the NAVSTAR Global Positioning System (GPS), and to applications. Numerous examples are included which refer to recent results in the fields of global and regional control networks; gravity field modeling; Earth rotation and global reference frames; crustal motion monitoring; cadastral and engineering surveying; geoinformation systems; land, air, and marine navigation; marine and glacial geodesy; and photogrammetry and remote sensing.

This book will be an indispensable source of information for all concerned with satellite geodesy and its applications, in particular for spatial referencing, geoinformation, navigation, geodynamics, and operational positioning.
Preface vii
Abbreviations xvii
1 Introduction 1(9)
1.1 Subject of Satellite Geodesy
1(2)
1.2 Classification and Basic Concepts of Satellite Geodesy
3(2)
1.3 Historical Development of Satellite Geodesy
5(2)
1.4 Applications of Satellite Geodesy
7(2)
1.5 Structure and Objective of the Book
9(1)
2 Fundamentals 10(52)
2.1 Reference Coordinate Systems
10(21)
2.1.1 Cartesian Coordinate Systems and Coordinate Transformations
10(2)
2.1.2 Reference Coordinate Systems and Frames in Satellite Geodesy
12(9)
2.1.2.1 Conventional Inertial Systems and Frames
13(2)
2.1.2.2 Conventional Terrestrial Systems and Frames
15(2)
2.1.2.3 Relationship between CIS and CTS
17(4)
2.1.3 Reference Coordinate Systems in the Gravity Field of Earth
21(2)
2.1.4 Ellipsoidal Reference Coordinate Systems
23(2)
2.1.5 Ellipsoid, Geoid and Geodetic Datum
25(3)
2.1.6 World Geodetic System 1984 (WGS 84)
28(2)
2.1.7 Three-dimensional Eccentricity Computation
30(1)
2.2 Time
31(11)
2.2.1 Basic Considerations
31(1)
2.2.2 Sidereal Time and Universal Time
32(3)
2.2.3 Atomic Time
35(2)
2.2.4 Ephemeris Time, Dynamical Time, Terrestrial Time
37(2)
2.2.5 Clocks and Frequency Standards
39(3)
2.3 Signal Propagation
42(20)
2.3.1 Some Fundamentals of Wave Propagation
43(5)
2.3.1.1 Basic Relations and Definitions
43(2)
2.3.1.2 Dispersion, Phase Velocity and Group Velocity
45(1)
2.3.1.3 Frequency Domains
46(2)
2.3.2 Structure and Subdivision of the Atmosphere
48(4)
2.3.3 Signal Propagation through the Ionosphere and the Troposphere
52(10)
2.3.3.1 Ionospheric Refraction
54(2)
2.3.3.2 Tropospheric Refraction
56(6)
3 Satellite Orbital Motion 62(73)
3.1 Fundamentals of Celestial Mechanics, Two-Body Problem
62(20)
3.1.1 Keplerian Motion
63(3)
3.1.2 Newtonian Mechanics, Two-Body Problem
66(11)
3.1.2.1 Equation of Motion
66(3)
3.1.2.2 Elementary Integration
69(5)
3.1.2.3 Vectorial Integration
74(3)
3.1.3 Orbit Geometry and Orbital Motion
77(5)
3.2 Perturbed Satellite Motion
82(27)
3.2.1 Representation of the Perturbed Orbital Motion
84(4)
3.2.1.1 Osculating and Mean Orbital Elements
84(1)
3.2.1.2 Lagrange's Perturbation Equations
85(2)
3.2.1.3 Gaussian Form of Perturbation Equation
87(1)
3.2.2 Disturbed Motion due to Earth's Anomalous Gravity Field
88(10)
3.2.2.1 Perturbation Equation and Geopotential
89(5)
3.2.2.2 Perturbations of the Elements
94(2)
3.2.2.3 Perturbations Caused by the Zonal Coefficients Jn
96(2)
3.2.3 Other Perturbations
98(10)
3.2.3.1 Perturbing Forces Caused by the Sun and Moon
98(3)
3.2.3.2 Solid Earth Tides and Ocean Tides
101(1)
3.2.3.3 Atmospheric Drag
102(2)
3.2.3.4 Direct and Indirect Solar Radiation Pressure
104(1)
3.2.3.5 Further Perturbations
105(2)
3.2.3.6 Resonances
107(1)
3.2.4 Implications of Perturbations on Selected Satellite Orbits
108(1)
3.3 Orbit Determination
109(17)
3.3.1 Integration of the Undisturbed Orbit
110(4)
3.3.2 Integration of the Perturbed Orbit
114(6)
3.3.2.1 Analytical Methods of Orbit Integration
114(2)
3.3.2.2 Numerical Methods of Orbit Integration
116(3)
3.3.2.3 Precise Orbit Determination with Spaceborne GPS
119(1)
3.3.3 Orbit Representation
120(6)
3.3.3.1 Ephemeris Representation for Navigation Satellites
121(1)
3.3.3.2 Polynomial Approximation
122(2)
3.3.3.3 Simplified Short Arc Representation
124(2)
3.4 Satellite Orbits and Constellations
126(9)
3.4.1 Basic Aspects
126(2)
3.4.2 Orbits and Constellations
128(3)
3.4.3 Sun-synchronous, Geostationary, and Transfer Orbits
131(4)
4 Basic Observation Concepts and Satellites Used in Geodesy 135(26)
4.1 Satellite Geodesy as a Parameter Estimation Problem
135(4)
4.2 Observables and Basic Concepts
139(8)
4.2.1 Determination of Directions
139(2)
4.2.2 Determination of Ranges
141(2)
4.2.3 Determination of Range Differences (Doppler method)
143(1)
4.2.4 Satellite Altimetry
144(1)
4.2.5 Determination of Ranges and Range-Rates (Satellite-to-Satellite Tracking)
144(1)
4.2.6 Interferometric Measurements
145(2)
4.2.7 Further Observation Techniques
147(1)
4.3 Satellites Used in Geodesy
147(11)
4.3.1 Basic Considerations
147(2)
4.3.2 Some Selected Satellites
149(3)
4.3.3 Satellite Subsystems
152(6)
4.3.3.1 Drag Free Systems
152(1)
4.3.3.2 Attitude Control
153(1)
4.3.3.3 Navigation Payload, PRARE
154(2)
4.3.4 Planned Satellites and Missions
156(2)
4.4 Some Early Observation Techniques (Classical Methods)
158(3)
4.4.1 Electronic Ranging SECOR
159(1)
4.4.2 Other Early Observation Techniques
160(1)
5 Optical Methods for the Determination of Directions 161(20)
5.1 Photographic Determination of Directions
161(11)
5.1.1 Satellites used for Camera Observations
162(1)
5.1.2 Satellite Cameras
163(1)
5.1.3 Observation and Plate Reduction
164(5)
5.1.4 Spatial Triangulation
169(1)
5.1.5 Results
170(2)
5.2 Directions with CCD Technology
172(4)
5.2.1 Image Coordinates from CCD Observations
172(2)
5.2.2 Star Catalogs, Star Identification and Plate Reduction
174(2)
5.2.3 Applications, Results and Prospects
176(1)
5.3 Directions from Space Platforms
176(5)
5.3.1 Star Tracker
177(1)
5.3.2 Astrometric Satellites, HIPPARCOS
177(1)
5.3.3 Planned Missions
178(3)
6 Doppler Techniques 181(30)
6.1 Doppler Effect and Basic Positioning Concept
183(3)
6.2 One Successful Example: The Navy Navigation Satellite System
186(4)
6.2.1 System Architecture
187(1)
6.2.2 Broadcast and Precise Ephemerides
188(2)
6.3 Doppler Receivers
190(3)
6.3.1 Basic concept
190(2)
6.3.2 Examples of Doppler Survey Sets
192(1)
6.4 Error Budget and Corrections
193(6)
6.4.1 Satellite Orbits
194(1)
6.4.2 Ionospheric and Tropospheric Refraction
195(1)
6.4.3 Receiver System
196(1)
6.4.4 Earth Rotation and Relativistic Effects
197(1)
6.4.5 Motion of the Receiver Antenna
198(1)
6.5 Observation Strategies and Adjustment Models
199(4)
6.5.1 Extended Observation Equation
199(2)
6.5.2 Single Station Positioning
201(1)
6.5.3 Multi-Station Positioning
202(1)
6.6 Applications
203(4)
6.6.1 Applications for Geodetic Control
204(1)
6.6.2 Further Applications
205(2)
6.7 DORIS
207(4)
7 The Global Positioning System (GPS) 211(193)
7.1 Fundamentals
211(23)
7.1.1 Introduction
211(2)
7.1.2 Space Segment
213(4)
7.1.3 Control Segment
217(1)
7.1.4 Observation Principle and Signal Structure
218(4)
7.1.5 Orbit Determination and Orbit Representation
222(7)
7.1.5.1 Determination of the Broadcast Ephemerides
222(1)
7.1.5.2 Orbit Representation
223(2)
7.1.5.3 Computation of Satellite Time and Satellite Coordinates
225(2)
7.1.5.4 Structure of the GPS Navigation Data
227(2)
7.1.6 Intentional Limitation of the System Accuracy
229(1)
7.1.7 System Development
230(4)
7.2 GPS Receivers (User Segment)
234(18)
7.2.1 Receiver Concepts and Main Receiver Components
234(5)
7.2.2 Code Dependent Signal Processing
239(1)
7.2.3 Codeless and Semicodeless Signal Processing
240(3)
7.2.4 Examples of GPS receivers
243(9)
7.2.4.1 Classical Receivers
243(2)
7.2.4.2 Examples of Currently Available Geodetic Receivers
245(3)
7.2.4.3 Navigation and Handheld Receivers
248(2)
7.2.5 Future Developments and Trends
250(2)
7.3 GPS Observables and Data Processing
252(45)
7.3.1 Observables
252(6)
7.3.1.1 Classical View
252(3)
7.3.1.2 Code and Carrier Phases
255(3)
7.3.2 Parameter Estimation
258(19)
7.3.2.1 Linear Combinations and Derived Observables
258(7)
7.3.2.2 Concepts of Parametrization
265(4)
7.3.2.3 Resolution of Ambiguities
269(8)
7.3.3 Data Handling
277(6)
7.3.3.1 Cycle Slips
277(4)
7.3.3.2 The Receiver Independent Data Format RINEX
281(2)
7.3.4 Adjustment Strategies and Software Concepts
283(6)
7.3.5 Concepts of Rapid Methods with GPS
289(6)
7.3.5.1 Basic Considerations
289(1)
7.3.5.2 Rapid Static Methods
290(2)
7.3.5.3 Semi Kinematic Methods
292(2)
7.3.5.4 Pure Kinematic Method
294(1)
7.3.6 Navigation with GPS
295(2)
7.4 Error Budget and Corrections
297(28)
7.4.1 Basic Considerations
297(3)
7.4.2 Satellite Geometry and Accuracy Measures
300(4)
7.4.3 Orbits and Clocks
304(5)
7.4.3.1 Broadcast Ephemerides and Clocks
304(3)
7.4.3.2 Precise Ephemerides and Clocks, IGS
307(2)
7.4.4 Signal Propagation
309(11)
7.4.4.1 Ionospheric Effects on GPS Signals
309(5)
7.4.4.2 Tropospheric Propagation Effects
314(2)
7.4.4.3 Multipath
316(3)
7.4.4.4 Further Propagation Effects, Diffraction and Signal Interference
319(1)
7.4.5 Receiving System
320(3)
7.4.5.1 Antenna Phase Center Variation
320(3)
7.4.5.2 Other Error Sources Related to the Receiving System
323(1)
7.4.6 Further Influences, Summary, the Issue of Integrity
323(2)
7.5 Differential GPS and Permanent Reference Networks
325(20)
7.5.1 Differential GPS (DGPS)
326(10)
7.5.1.1 DGPS Concepts
326(3)
7.5.1.2 Data Formats and Data Transmission
329(3)
7.5.1.3 Examples of Services
332(4)
7.5.2 Real Time Kinematic GPS
336(2)
7.5.3 Multiple Reference Stations
338(7)
7.5.3.1 Wide Area Differential GPS
339(2)
7.5.3.2 High Precision Networked Reference Stations
341(4)
7.6 Applications
345(38)
7.6.1 Planning and Realization of GPS Observation
345(11)
7.6.1.1 Setting Up an Observation Plan
346(2)
7.6.1.2 Practical Aspects in Field Observations
348(2)
7.6.1.3 Observation Strategies and Network Design
350(6)
7.6.2 Possible Applications and Examples of GPS Observations
356(27)
7.6.2.1 Geodetic Control Surveys
357(5)
7.6.2.2 Geodynamics
362(4)
7.6.2.3 Height Determination
366(2)
7.6.2.4 Cadastral Surveying, Geographic Information Systems
368(3)
7.6.2.5 Fleet Management, Telematics, Location Based Services
371(1)
7.6.2.6 Engineering and Monitoring
372(3)
7.6.2.7 Precise Marine Navigation, Marine Geodesy, and Hydrography
375(3)
7.6.2.8 Photogrammetry, Remote Sensing, Airborne GPS
378(2)
7.6.2.9 Special Applications of GPS
380(3)
7.7 GNSS - Global Navigation Satellite System
383(14)
7.7.1 GLONASS
384(8)
7.7.2 GPS/GLONASS Augmentations
392(1)
7.7.3 GALILEO
393(4)
7.8 Services and Organizations Related to GPS
397(7)
7.8.1 The International GPS Service (IGS)
397(4)
7.8.2 Other Services
401(3)
8 Laser Ranging 404(39)
8.1 Introduction
404(2)
8.2 Satellites Equipped with Laser Reflectors
406(5)
8.3 Laser Ranging Systems and Components
411(7)
8.3.1 Laser Oscillators
411(1)
8.3.2 Other System Components
412(2)
8.3.3 Currently Available Fixed and Transportable Laser Systems
414(2)
8.3.4 Trends in SLR System Developments
416(2)
8.4 Corrections, Data Processing and Accuracy
418(6)
8.4.1 Extended Ranging Equation
418(4)
8.4.2 Data Control, Data Compression, and Normal Points
422(2)
8.5 Applications of Satellite Laser Ranging
424(12)
8.5.1 Realization of Observation Programs, International Laser Ranging Service (ILRS)
424(3)
8.5.2 Parameter Estimation
427(1)
8.5.3 Earth Gravity Field, Precise Orbit Determination (POD)
428(3)
8.5.4 Positions and Position Changes
431(1)
8.5.5 Earth Rotation, Polar Motion
432(3)
8.5.6 Other applications
435(1)
8.6 Lunar Laser Ranging
436(5)
8.7 Spaceborne Laser
441(2)
9 Satellite Altimetry 443(26)
9.1 Basic Concept
443(1)
9.2 Satellites and Missions
444(7)
9.3 Measurements, Corrections, Accuracy
451(9)
9.3.1 Geometry of Altimeter Observations
451(1)
9.3.2 Data Generation
452(2)
9.3.3 Corrections and Error Budget
454(6)
9.4 Determination of the Mean Sea Surface
460(1)
9.5 Applications of Satellite Altimetry
461(8)
9.5.1 Geoid and Gravity Field Determination
462(2)
9.5.2 Geophysical Interpretation
464(1)
9.5.3 Oceanography and Glaciology
465(4)
10 Gravity Field Missions 469(16)
10.1 Basic Considerations
469(4)
10.2 Satellite-to-Satellite Tracking (SST)
473(7)
10.2.1 Concepts
473(3)
10.2.2 High-Low Mode, CHAMP
476(1)
10.2.3 Low-Low Mode, GRACE
477(3)
10.3 Satellite Gravity Gradiometry
480(5)
10.3.1 Concepts
480(2)
10.3.2 GOCE mission
482(3)
11 Related Space Techniques 485(21)
11.1 Very Long Baseline Interferometry
485(15)
11.1.1 Basic Concept, Observation Equations, and Error Budget
485(6)
11.1.2 Applications
491(5)
11.1.3 International Cooperation, International VLBI Service (IVS)
496(2)
11.1.4 VLBI with Satellites
498(2)
11.2 Interferometric Synthetic Aperture Radar (InSAR)
500(6)
11.2.1 Basic Concepts, Synthetic Aperture Radar (SAR)
500(2)
11.2.2 Interferometric SAR
502(3)
11.2.3 Differential Radar Interferometry
505(1)
12 Overview and Applications 506(33)
12.1 Positioning
506(8)
12.1.1 Concepts, Absolute and Relative Positioning
506(4)
12.1.2 Global and Regional Networks
510(1)
12.1.3 Operational Positioning
511(3)
12.2 Gravity Field and Earth Models
514(9)
12.2.1 Fundamentals
514(5)
12.2.2 Earth Models
519(4)
12.3 Navigation and Marine Geodesy
523(4)
12.3.1 Possible Applications and Accuracy Requirements in Marine Positioning
523(1)
12.3.2 Marine Positioning Techniques
524(3)
12.4 Geodynamics
527(7)
12.4.1 Recent Crustal Movements
527(2)
12.4.2 Earth Rotation, Reference Frames, IERS
529(5)
12.5 Combination of Geodetic Space Techniques
534(5)
12.5.1 Basic Considerations
534(1)
12.5.2 Fundamental Stations
535(2)
12.5.3 Integrated Global Geodetic Observing System (IGLOS)
537(2)
References 539(36)
Index 575