Foreword |
|
xi | |
|
|
1 | (8) |
|
1.1. Semantic Web Technologies |
|
|
1 | (1) |
|
1.2. The Goal of the Semantic Web |
|
|
2 | (2) |
|
1.3. Ontologies and Ontology Languages |
|
|
4 | (1) |
|
1.4. Creating and Managing Ontologies |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.7. Developing the Semantic Web |
|
|
8 | (1) |
|
|
8 | (1) |
|
2. Knowledge Discovery for Ontology Construction |
|
|
9 | (20) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
2.4. Methodology for Semi-automatic Ontology Construction |
|
|
11 | (1) |
|
2.5. Ontology Learning Scenarios |
|
|
12 | (1) |
|
2.6. Using Knowledge Discovery for Ontology Learning |
|
|
13 | (9) |
|
2.6.1. Unsupervised Learning |
|
|
14 | (2) |
|
2.6.2. Semi-Supervised, Supervised, and Active Learning |
|
|
16 | (2) |
|
2.6.3. Stream Mining and Web Mining |
|
|
18 | (1) |
|
|
18 | (1) |
|
2.6.5. Data Visualization |
|
|
19 | (3) |
|
2.7. Related Work on Ontology Construction |
|
|
22 | (2) |
|
2.8. Discussion and Conclusion |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (4) |
|
3. Semantic Annotation and Human Language Technology |
|
|
29 | (22) |
|
|
29 | (2) |
|
3.2. Information Extraction: A Brief Introduction |
|
|
31 | (4) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (2) |
|
3.3.1. What is Ontology-Based Information Extraction |
|
|
36 | (1) |
|
3.4. Applying 'Traditional' IE in Semantic Web Applications |
|
|
37 | (3) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (5) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (2) |
|
3.6. Deterministic Ontology Authoring using Controlled Language IE |
|
|
45 | (3) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (20) |
|
|
51 | (1) |
|
4.2. Ontology Evolution: State-of-the-art |
|
|
52 | (8) |
|
|
53 | (1) |
|
4.2.2. Change Representation |
|
|
54 | (2) |
|
4.2.3. Semantics of Change |
|
|
56 | (2) |
|
4.2.4. Change Propagation |
|
|
58 | (1) |
|
4.2.5. Change Implementation |
|
|
59 | (1) |
|
|
60 | (1) |
|
4.3. Logical Architecture |
|
|
60 | (2) |
|
4.4. Data-driven Ontology Changes |
|
|
62 | (4) |
|
4.4.1. Incremental Ontology Learning |
|
|
64 | (2) |
|
4.5. Usage-driven Ontology Changes |
|
|
66 | (2) |
|
4.5.1. Usage-driven Hierarchy Pruning |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (2) |
5. Reasoning With Inconsistent Ontologies: Framework, Prototype, and Experiment |
|
71 | (68) |
|
|
71 | (2) |
|
5.2. Brief Survey of Approaches to Reasoning with Inconsistency |
|
|
73 | (2) |
|
5.2.1. Paraconsistent Logics |
|
|
73 | (1) |
|
5.2.2. Ontology Diagnosis |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
5.3. Brief Survey of Causes for Inconsistency in the Semantic Web |
|
|
75 | (4) |
|
5.3.1. Inconsistency by Mis-representation of Default |
|
|
75 | (2) |
|
5.3.2. Inconsistency Caused by Polysemy |
|
|
77 | (1) |
|
5.3.3. Inconsistency through Migration from Another Formalism |
|
|
77 | (1) |
|
5.3.4. Inconsistency Caused by Multiple Sources |
|
|
78 | (1) |
|
5.4. Reasoning with Inconsistent Ontologies |
|
|
79 | (3) |
|
5.4.1. Inconsistency Detection |
|
|
79 | (1) |
|
5.4.2. Formal Definitions |
|
|
80 | (2) |
|
|
82 | (1) |
|
5.6. Strategies for Selection Functions |
|
|
83 | (2) |
|
5.7. Syntactic Relevance-Based Selection Functions |
|
|
85 | (2) |
|
|
87 | (4) |
|
|
87 | (1) |
|
5.8.2. Experiments and Evaluation |
|
|
88 | (3) |
|
5.8.3. Future Experiments |
|
|
91 | (1) |
|
5.9. Discussion and Conclusions |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (3) |
|
6. Ontology Mediation, Merging, and Aligning |
|
|
95 | (20) |
|
|
95 | (1) |
|
6.2. Approaches in Ontology Mediation |
|
|
96 | (8) |
|
6.2.1. Ontology Mismatches |
|
|
97 | (1) |
|
|
97 | (3) |
|
6.2.3. Ontology Alignment |
|
|
100 | (2) |
|
|
102 | (2) |
|
6.3. Mapping and Querying Disparate Knowledge Bases |
|
|
104 | (7) |
|
|
106 | (2) |
|
6.3.2. A (Semi-)Automatic Process for Ontology Alignment |
|
|
108 | (2) |
|
6.3.3. OntoMap: an Ontology Mapping Tool |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (3) |
|
7. Ontologies for Knowledge Management |
|
|
115 | (24) |
|
|
115 | (1) |
|
7.2. Ontology Usage Scenario |
|
|
116 | (1) |
|
|
117 | (6) |
|
|
119 | (1) |
|
|
120 | (3) |
|
7.4. Ontologies as RDBMS Schema |
|
|
123 | (1) |
|
7.5. Topic-ontologies Versus Schema-ontologies |
|
|
124 | (2) |
|
|
126 | (9) |
|
|
126 | (1) |
|
|
127 | (1) |
|
7.6.3. Scope, Coverage, Compliance |
|
|
128 | (2) |
|
7.6.4. The Architecture of Proton |
|
|
130 | (1) |
|
|
131 | (2) |
|
7.6.6. Proton Knowledge Management Module |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (3) |
8. Semantic Information Access |
|
139 | (52) |
|
|
139 | (1) |
|
8.2. Knowledge Access and the Semantic WEB |
|
|
139 | (13) |
|
8.2.1. Limitations of Current Search Technology |
|
|
140 | (2) |
|
8.2.2. Role of Semantic Technology |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
8.2.5. Exploiting Domain-specific Knowledge |
|
|
146 | (4) |
|
8.2.6. Searching for Semantic Web Resources |
|
|
150 | (1) |
|
|
151 | (1) |
|
8.3. Natural Language Generation from Ontologies |
|
|
152 | (4) |
|
8.3.1. Generation from Taxonomies |
|
|
153 | (1) |
|
8.3.2. Generation of Interactive Information Sheets |
|
|
154 | (1) |
|
8.3.3. Ontology Verbalisers |
|
|
154 | (1) |
|
|
154 | (1) |
|
8.3.5. Ontosum and Miakt Summary Generators |
|
|
155 | (1) |
|
8.4. Device Independence: Information Anywhere |
|
|
156 | (8) |
|
8.4.1. Issues in Device Independence |
|
|
157 | (3) |
|
8.4.2. Device Independence Architectures and Technologies |
|
|
160 | (2) |
|
|
162 | (2) |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
167 | (4) |
|
9. Ontology Engineering Methodologies |
|
|
171 | (20) |
|
|
171 | (1) |
|
9.2. The Methodology Focus |
|
|
172 | (2) |
|
9.2.1. Definition of Methodology for Ontologies |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
9.3. Past and Current Research |
|
|
174 | (6) |
|
|
174 | (3) |
|
9.3.2. Ontology Engineering Tools |
|
|
177 | (1) |
|
9.3.3. Discussion and Open Issues |
|
|
178 | (2) |
|
9.4. Diligent Methodology |
|
|
180 | (5) |
|
|
180 | (3) |
|
9.4.2. Argumentation Support |
|
|
183 | (2) |
|
9.5. First Lessons Learned |
|
|
185 | (1) |
|
9.6. Conclusion and Next Steps |
|
|
186 | (1) |
|
|
187 | (4) |
10. Semantic Web Services – Approaches and Perspectives |
|
191 | (46) |
|
10.1. Semantic Web Services – A Short Overview |
|
|
191 | (1) |
|
|
192 | (15) |
|
10.2.1. The Conceptual Model – The Web Services Modeling Ontology (WSMO) |
|
|
193 | (5) |
|
10.2.2. The Language – The Web Service Modeling Language (WSML) |
|
|
198 | (6) |
|
10.2.3. The Execution Environment – The Web Service Modeling Execution Environment (WSMX) |
|
|
204 | (3) |
|
|
207 | (6) |
|
10.3.1. OWL-S Service Profiles |
|
|
209 | (1) |
|
10.3.2. OWL-S Service Models |
|
|
210 | (3) |
|
|
213 | (5) |
|
10.4.1. The Semantic Web Services Ontology (SWSO) |
|
|
213 | (3) |
|
10.4.2. The Semantic Web Services Language (SWSL) |
|
|
216 | (2) |
|
10.5. The IRS-III Approach |
|
|
218 | (4) |
|
10.5.1. Principles Underlying IRS-III |
|
|
218 | (2) |
|
10.5.2. The IRS-III Architecture |
|
|
220 | (1) |
|
10.5.3. Extension to WSMO |
|
|
221 | (1) |
|
10.6. The WSDL-S Approach |
|
|
222 | (4) |
|
10.6.1. Aims and Principles |
|
|
222 | (2) |
|
10.6.2. Semantic Annotations |
|
|
224 | (2) |
|
10.7. Semantic Web Services Grounding: The Link Between SWS and Existing Web Services Standards |
|
|
226 | (6) |
|
10.7.1. General Grounding Uses and Issues |
|
|
226 | (2) |
|
|
228 | (2) |
|
10.7.3. Behavioural Grounding |
|
|
230 | (2) |
|
10.8. Conclusions and Outlook |
|
|
232 | (2) |
|
|
234 | (3) |
11. Applying Semantic Technology to a Digital Library |
|
237 | (22) |
|
|
237 | (1) |
|
11.2. Digital Libraries: The State-of-the-art |
|
|
238 | (4) |
|
11.2.1. Working Libraries |
|
|
238 | (1) |
|
|
239 | (2) |
|
11.2.3. The Research Environment |
|
|
241 | (1) |
|
11.3. A Case Study: The BT Digital Library |
|
|
242 | (6) |
|
11.3.1. The Starting Point |
|
|
242 | (2) |
|
11.3.2. Enhancing the Library with Semantic Technology |
|
|
244 | (4) |
|
|
248 | (2) |
|
11.5. Implementing Semantic Technology in a Digital Library |
|
|
250 | (5) |
|
11.5.1. Ontology Engineering |
|
|
250 | (1) |
|
11.5.2. BT Digital Library End-user Applications |
|
|
251 | (1) |
|
11.5.3. The BT Digital Library Architecture |
|
|
252 | (3) |
|
11.5.4. Deployment View of the BT Digital Library |
|
|
255 | (1) |
|
|
255 | (2) |
|
|
257 | (2) |
12. Semantic Web: A Legal Case Study |
|
259 | (22) |
|
|
259 | (1) |
|
12.2. Profile of the Users |
|
|
260 | (2) |
|
12.3. Ontologies for Legal Knowledge |
|
|
262 | (10) |
|
12.3.1. Legal Ontologies: State of the Art |
|
|
263 | (2) |
|
12.3.2 Ontologics of Professional Knowledge: OPJK |
|
|
265 | (2) |
|
12.3.3. Benefits of Semantic Technology and Methodology |
|
|
267 | (5) |
|
|
272 | (6) |
|
12.4.1. Iuriservice Prototype |
|
|
272 | (6) |
|
|
278 | (1) |
|
|
278 | (3) |
13. A Semantic Service-Oriented Architecture for the Telecommunications Industry |
|
281 | (20) |
|
|
281 | (1) |
|
13.2. Introduction to Service-oriented Architectures |
|
|
282 | (2) |
|
13.3. A Semantic Service-orientated architecture |
|
|
284 | (2) |
|
|
286 | (1) |
|
|
287 | (1) |
|
13.4.2. Process Mediation |
|
|
287 | (1) |
|
13.5. Standards and Ontologies in Telecommunications |
|
|
287 | (3) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
290 | (8) |
|
13.6.1. Broadband Diagnostics |
|
|
292 | (1) |
|
13.6.2. The B2B Gateway Architecture |
|
|
292 | (2) |
|
13.6.3. Semantic B2B Integration Prototype |
|
|
294 | (3) |
|
13.6.4. Prototype Implementation |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (2) |
14. Conclusion arid Outlook |
|
301 | (8) |
|
14.1. Management of Networked Ontologies |
|
|
301 | (1) |
|
14.2. Engineering of Networked Ontologies |
|
|
302 | (1) |
|
14.3. Contextualizing Ontologies |
|
|
303 | (1) |
|
14.4. Cross Media Resources |
|
|
304 | (2) |
|
14.5. Social Semantic Desktop |
|
|
306 | (1) |
|
|
307 | (2) |
Index |
|
309 | |