Preface |
|
xxv | |
Acknowledgement |
|
xxix | |
|
Part 1 Machine Learning and Its Application |
|
|
1 | (126) |
|
1 Single Image Super-Resolution Using GANs for High-Upscaling Factors |
|
|
3 | (14) |
|
|
|
|
|
|
|
3 | (2) |
|
|
5 | (2) |
|
1.2.1 Architecture Details |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3.1 Environment Details |
|
|
7 | (1) |
|
1.3.2 Training Dataset Details |
|
|
7 | (1) |
|
1.3.3 Training Parameters |
|
|
7 | (1) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
10 | (7) |
|
|
13 | (4) |
|
2 Landmark Recognition Using VGG16 Training |
|
|
17 | (24) |
|
|
|
|
|
|
17 | (2) |
|
|
19 | (7) |
|
2.2.1 ImageNet Classification |
|
|
19 | (3) |
|
2.2.2 Deep Local Features |
|
|
22 | (3) |
|
|
25 | (1) |
|
|
26 | (7) |
|
2.3.1 Revisiting Datasets |
|
|
26 | (2) |
|
2.3.1.1 Data Pre-Processing |
|
|
28 | (2) |
|
|
30 | (3) |
|
2.4 Results and Conclusions |
|
|
33 | (4) |
|
|
37 | (4) |
|
|
37 | (4) |
|
3 A Comparison of Different Techniques Used for Classification of Bird Species From Images |
|
|
41 | (10) |
|
|
|
|
|
|
41 | (1) |
|
3.2 CUB 200 2011 Birds Dataset |
|
|
42 | (1) |
|
3.3 Machine Learning Approaches |
|
|
42 | (4) |
|
|
44 | (1) |
|
3.3.2 Support Vector Machine |
|
|
45 | (1) |
|
|
45 | (1) |
|
3.4 Deep Learning Approaches |
|
|
46 | (2) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
3.6 Conclusion and Future Scope |
|
|
49 | (2) |
|
|
49 | (2) |
|
4 Road Lane Detection Using Advanced Image Processing Techniques |
|
|
51 | (22) |
|
|
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (14) |
|
|
53 | (3) |
|
4.4.2 Camera Calibration and Distortion Correction |
|
|
56 | (3) |
|
4.4.3 Threshold Binary Image |
|
|
59 | (2) |
|
4.4.4 Perspective Transform |
|
|
61 | (3) |
|
4.4.5 Finding the Lane Lines--Sliding Window |
|
|
64 | (3) |
|
4.4.6 Radius of Curvature and Central Offset |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (2) |
|
4.7 Results and Discussions |
|
|
70 | (1) |
|
4.8 Conclusion and Future Work |
|
|
70 | (3) |
|
|
70 | (3) |
|
5 Facial Expression Recognition in Real Time Using Convolutional Neural Network |
|
|
73 | (18) |
|
|
|
|
73 | (2) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (4) |
|
5.3.1 Applying Transfer Learning using VGG-16 |
|
|
77 | (1) |
|
5.3.2 Modeling and Training |
|
|
78 | (2) |
|
|
80 | (6) |
|
5.5 Conclusion and Future Scope |
|
|
86 | (5) |
|
|
87 | (4) |
|
6 Feature Extraction and Image Recognition of Cursive Handwritten English Words Using Neural Network and IAM Off-Line Database |
|
|
91 | (12) |
|
|
|
|
91 | (2) |
|
6.1.1 Scope of Discussion |
|
|
92 | (1) |
|
|
93 | (1) |
|
6.2.1 Early Scanners and the Digital Age |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
94 | (4) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
6.3.4 Implementation and Training |
|
|
97 | (1) |
|
|
98 | (2) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
6.5 Conclusion and Future Work |
|
|
100 | (3) |
|
6.5.1 Image Pre-Processing |
|
|
100 | (1) |
|
6.5.2 Extend the Model to Fit Text-Lines |
|
|
100 | (1) |
|
6.5.3 Integrate Word Beam Search Decoding |
|
|
100 | (1) |
|
|
101 | (2) |
|
7 License Plate Recognition System Using Machine Learning |
|
|
103 | (12) |
|
|
|
|
|
|
|
103 | (2) |
|
|
105 | (1) |
|
|
105 | (1) |
|
7.3 Classification Models |
|
|
106 | (2) |
|
7.3.1 Logistic Regression |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
7.3.5 Support Vector Machines |
|
|
107 | (1) |
|
7.3.5.1 Linear Classification |
|
|
108 | (1) |
|
7.3.5.2 Nonlinear Classification |
|
|
108 | (1) |
|
7.4 Proposed Work and Methodology |
|
|
108 | (4) |
|
7.4.1 Detect License Plate |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
7.4.4 Prediction and Recognition |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
112 | (3) |
|
|
112 | (3) |
|
8 Prediction of Disease Using Machine Learning Algorithms |
|
|
115 | (12) |
|
|
|
|
115 | (1) |
|
8.2 Datasets and Evaluation Methodology |
|
|
116 | (2) |
|
|
117 | (1) |
|
|
118 | (5) |
|
8.3.1 Decision Tree Classifier |
|
|
118 | (1) |
|
8.3.2 Random Forest Classifier |
|
|
119 | (1) |
|
8.3.3 Support Vector Machines |
|
|
120 | (1) |
|
8.3.4 K Nearest Neighbors |
|
|
121 | (2) |
|
|
123 | (1) |
|
|
123 | (4) |
|
|
123 | (4) |
|
Part 2 Deep Learning and Its Application |
|
|
127 | (180) |
|
9 Brain Tumor Prediction by Binary Classification Using VGG-16 |
|
|
129 | (10) |
|
|
|
|
|
|
|
130 | (1) |
|
|
130 | (2) |
|
9.2.1 Dataset Description |
|
|
130 | (1) |
|
9.2.2 Data Import and Preprocessing |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
9.4.2.1 Pre-Trained Model Approach |
|
|
134 | (1) |
|
|
134 | (2) |
|
|
136 | (1) |
|
9.7 Conclusion and Future Scope |
|
|
136 | (3) |
|
|
137 | (2) |
|
10 Study of Gesture-Based Communication Translator by Deep Learning Technique |
|
|
139 | (12) |
|
|
|
|
|
|
|
139 | (2) |
|
|
141 | (1) |
|
10.3 The Proposed Recognition System |
|
|
142 | (6) |
|
|
143 | (2) |
|
|
145 | (1) |
|
10.3.3 Classification and Recognition |
|
|
146 | (1) |
|
|
147 | (1) |
|
10.4 Result and Discussion |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
11 Transfer Learning for 3-Dimensional Medical Image Analysis |
|
|
151 | (22) |
|
|
|
|
|
|
|
151 | (1) |
|
|
152 | (3) |
|
|
152 | (1) |
|
|
153 | (1) |
|
11.2.3 PyTorch and Keras (Our Libraries) |
|
|
154 | (1) |
|
|
155 | (4) |
|
11.3.1 Convolution Neural Network |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (3) |
|
11.4.1 Previously Used Dataset |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
11.4.4 Understanding the Data |
|
|
160 | (2) |
|
11.5 Description of the Dataset |
|
|
162 | (1) |
|
|
162 | (3) |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
167 | (1) |
|
11.8 Results and Discussion |
|
|
167 | (2) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (4) |
|
|
170 | (1) |
|
|
170 | (3) |
|
12 A Study on Recommender Systems |
|
|
173 | (8) |
|
|
|
|
|
173 | (1) |
|
|
174 | (2) |
|
|
175 | (1) |
|
|
175 | (1) |
|
12.2.3 Collaborative Systems |
|
|
175 | (1) |
|
|
176 | (2) |
|
|
176 | (1) |
|
|
177 | (1) |
|
12.3.3 Performance Measures |
|
|
178 | (1) |
|
12.4 Results and Discussion |
|
|
178 | (2) |
|
12.5 Conclusions and Future Scope |
|
|
180 | (1) |
|
|
180 | (1) |
|
13 Comparing Various Machine Learning Algorithms for User Recommendations Systems |
|
|
181 | (10) |
|
|
|
|
|
181 | (1) |
|
|
182 | (1) |
|
13.3 Methods and Materials |
|
|
182 | (3) |
|
13.3.1 Content-Based Filtering |
|
|
182 | (1) |
|
13.3.2 Collaborative Filtering |
|
|
182 | (1) |
|
13.3.3 User-User Collaborative Filtering |
|
|
182 | (1) |
|
13.3.4 Item-Item Collaborative Filtering |
|
|
183 | (1) |
|
13.3.5 Random Forest Algorithm |
|
|
183 | (1) |
|
|
183 | (1) |
|
13.3.7 ADA Boost Classifier |
|
|
184 | (1) |
|
13.3.8 XGBoost Classifier |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
13.3.11 Dataset Description |
|
|
185 | (1) |
|
13.4 Experiment Results and Discussion |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
190 | (1) |
|
14 Indian Literacy Analysis Using Machine Learning Algorithms |
|
|
191 | (14) |
|
|
|
Ruchi Goeland Gaurav Aggarwal |
|
|
|
191 | (2) |
|
|
193 | (1) |
|
|
194 | (3) |
|
14.3.1 Preparation of Dataset |
|
|
195 | (1) |
|
|
195 | (1) |
|
14.3.3 Data Visualization |
|
|
195 | (1) |
|
|
196 | (1) |
|
14.3.4.1 KNN (K-Nearest Neighbors) |
|
|
196 | (1) |
|
14.3.4.2 ElasticNet Regression |
|
|
196 | (1) |
|
14.3.4.3 Artificial Neural Networks |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
197 | (2) |
|
|
199 | (3) |
|
14.6 Conclusion and Future Scope |
|
|
202 | (3) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (2) |
|
15 Motion Transfer in Videos using Deep Convolutional Generative Adversarial Networks |
|
|
205 | (10) |
|
|
|
|
|
|
205 | (1) |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
209 | (1) |
|
15.3.2 Pose Detection and Estimation |
|
|
209 | (1) |
|
15.4 Pose to Video Translation |
|
|
209 | (1) |
|
15.5 Results and Analysis |
|
|
210 | (2) |
|
15.6 Conclusion and Future Scope |
|
|
212 | (3) |
|
|
213 | (2) |
|
16 Twin Question Pair Classification |
|
|
215 | (14) |
|
|
|
|
|
|
|
215 | (1) |
|
|
216 | (2) |
|
16.2.1 Duplicate Quora Questions Detection by Lei Guo, Chong Li & Haiming Tian |
|
|
216 | (1) |
|
16.2.2 Natural Language Understanding with the Quora Question Pairs Dataset by Lakshay Sharma, Laura Graesser, Nikita Nangia, UtkuEvci |
|
|
217 | (1) |
|
16.2.3 Duplicate Detection in Programming Question Answering Communities by Wei Emma Zhang and Quan Z. Sheng, Macquarie University |
|
|
217 | (1) |
|
16.2.4 Exploring Deep Learning in Semantic Question Matching by Arpan Poudel and Ashwin Dhakal |
|
|
218 | (1) |
|
16.3 Methods Applied for Training |
|
|
218 | (6) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (2) |
|
16.3.4 Random Forest Classifier |
|
|
222 | (2) |
|
16.4 Proposed Methodology |
|
|
224 | (1) |
|
|
224 | (1) |
|
|
224 | (1) |
|
16.4.3 Data Cleaning and Pre-Processing |
|
|
224 | (1) |
|
|
225 | (1) |
|
16.4.5 Feature Extraction |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (3) |
|
|
226 | (3) |
|
17 Exploration of Pixel-Based and Object-Based Change Detection Techniques by Analyzing ALOS PALSAR and LANDSAT Data |
|
|
229 | (16) |
|
|
|
|
|
229 | (2) |
|
17.2 Classification of Pixel-Based and Object-Based Change Detection Methods |
|
|
231 | (6) |
|
|
231 | (1) |
|
17.2.2 Image Differencing |
|
|
232 | (1) |
|
|
233 | (1) |
|
17.2.4 Vegetation Index Differencing |
|
|
233 | (2) |
|
17.2.5 Minimum Distance Classification |
|
|
235 | (1) |
|
17.2.6 Maximum Likelihood Classification |
|
|
235 | (1) |
|
17.2.7 Spectral Angle Mapper (SAM) |
|
|
235 | (1) |
|
17.2.8 Support Vector Machine |
|
|
236 | (1) |
|
17.3 Experimental Results |
|
|
237 | (5) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (4) |
|
|
242 | (3) |
|
|
242 | (1) |
|
|
242 | (3) |
|
18 Tracing Bad Code Smells Behavior Using Machine Learning with Software Metrics |
|
|
245 | (14) |
|
|
|
|
|
245 | (2) |
|
18.2 Related Work and Motivation |
|
|
247 | (1) |
|
|
248 | (3) |
|
|
248 | (1) |
|
18.3.2 Static Code Analysis |
|
|
249 | (1) |
|
|
250 | (1) |
|
18.3.4 Machine Learning Approach |
|
|
251 | (1) |
|
18.4 Result Analysis and Manual Validation |
|
|
251 | (4) |
|
18.5 Threats, Limitation and Conclusion |
|
|
255 | (4) |
|
|
255 | (4) |
|
19 A Survey on Various Negation Handling Techniques in Sentiment Analysis |
|
|
259 | (22) |
|
|
|
|
259 | (2) |
|
19.2 Methods for Negation Identification |
|
|
261 | (6) |
|
|
261 | (1) |
|
19.2.2 Contextual Valence Shifters |
|
|
261 | (1) |
|
19.2.3 Semantic Relations |
|
|
262 | (2) |
|
19.2.4 Relations and Dependency-Based or Syntactic-Based |
|
|
264 | (3) |
|
|
267 | (11) |
|
|
278 | (3) |
|
|
279 | (2) |
|
20 Mobile-Based Bilingual Speech Corpus |
|
|
281 | (14) |
|
|
|
|
|
281 | (2) |
|
20.2 Overview of Multilingual Speech Corpus for Indian Languages |
|
|
283 | (1) |
|
20.3 Methodology for Speech Corpus Development |
|
|
283 | (8) |
|
|
287 | (1) |
|
|
287 | (1) |
|
20.3.1.2 Speaker Selection |
|
|
288 | (1) |
|
20.3.1.3 Device Selection |
|
|
288 | (1) |
|
20.3.1.4 Recording Environment |
|
|
289 | (1) |
|
|
289 | (1) |
|
20.3.3 Segregation and Editing |
|
|
289 | (1) |
|
|
290 | (1) |
|
20.4 Description of Bilingual Speech Corpus |
|
|
291 | (1) |
|
20.5 Conclusion and Future Scope |
|
|
292 | (3) |
|
|
292 | (3) |
|
21 Intrusion Detection using Nature-Inspired Algorithms and Automated Machine Learning |
|
|
295 | (12) |
|
|
|
|
295 | (3) |
|
|
298 | (2) |
|
|
300 | (4) |
|
21.3.1 Nature Inspired Algorithms for Feature Selection |
|
|
300 | (1) |
|
21.3.2 Automated Machine Learning |
|
|
301 | (1) |
|
21.3.3 Architecture Search using Bayesian Search |
|
|
301 | (2) |
|
21.3.4 Hyperparameter Optimization Through Particle Swarm Optimization (HPO-PSO) |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
304 | (3) |
|
|
304 | (3) |
|
Part 3 Security and Blockchain |
|
|
307 | (66) |
|
22 Distributed Ownership Model for Non-Fungible Tokens |
|
|
309 | (14) |
|
|
|
|
309 | (1) |
|
|
310 | (1) |
|
22.2.1 Blockchain Technology |
|
|
310 | (1) |
|
|
311 | (1) |
|
22.3 Proposed Architecture |
|
|
311 | (4) |
|
|
311 | (1) |
|
|
312 | (1) |
|
22.3.3 Rationale for Smart Contract |
|
|
313 | (1) |
|
22.3.4 Smart Contract Tables |
|
|
314 | (1) |
|
|
315 | (3) |
|
22.4.1 Transaction Volume |
|
|
316 | (1) |
|
22.4.2 Comparison Between NFT Tokens |
|
|
317 | (1) |
|
|
318 | (2) |
|
|
318 | (1) |
|
22.5.2 Solution by Distributed NFT |
|
|
318 | (2) |
|
|
320 | (1) |
|
22.7 Conclusion and Future Work |
|
|
321 | (2) |
|
|
321 | (2) |
|
23 Comparative Analysis of Various Platforms of Blockchain |
|
|
323 | (18) |
|
|
|
|
|
|
|
23.1 Introduction to Blockchain |
|
|
323 | (2) |
|
23.2 Important Terms of Blockchain |
|
|
325 | (2) |
|
|
325 | (1) |
|
|
325 | (1) |
|
23.2.3 Consensus Algorithm |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
23.3 Bitcoin or Blockchain |
|
|
327 | (1) |
|
23.3.1 Primary Key and Public Key |
|
|
327 | (1) |
|
23.3.2 Workflow of Bitcoin |
|
|
327 | (1) |
|
23.4 Platforms of Blockchain |
|
|
328 | (6) |
|
|
328 | (1) |
|
|
328 | (1) |
|
23.4.1.2 Ethereum and Bitcoin |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
23.4.2.1 Purpose of Introducing Hyperledger |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
23.4.2.4 Framework Use Cases |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
331 | (1) |
|
23.4.3.3 Corda vs Bitcoin |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
23.4.4.2 Assets and Anchors |
|
|
332 | (1) |
|
|
333 | (1) |
|
23.4.4.4 Stellar Consensus |
|
|
333 | (1) |
|
|
333 | (1) |
|
|
333 | (1) |
|
|
334 | (1) |
|
23.4.5.3 Consensus Algorithm for Multichain |
|
|
334 | (1) |
|
|
334 | (1) |
|
23.5 Blockchain Platforms and Comparative Analysis |
|
|
334 | (4) |
|
|
338 | (3) |
|
|
338 | (3) |
|
24 Smart Garbage Monitoring System |
|
|
341 | (14) |
|
|
|
|
341 | (2) |
|
|
343 | (1) |
|
|
344 | (1) |
|
24.4 System Specifications |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
348 | (4) |
|
|
352 | (1) |
|
|
352 | (1) |
|
|
352 | (3) |
|
|
353 | (2) |
|
25 Study of Various Intrusion Detection Systems: A Survey |
|
|
355 | (18) |
|
|
|
|
355 | (1) |
|
|
356 | (1) |
|
25.3 Intrusion Detection Systems |
|
|
356 | (3) |
|
25.3.1 Host-Based IDS (HIDS) |
|
|
357 | (1) |
|
25.3.2 Network-Based IDS (NIDS) |
|
|
357 | (1) |
|
25.3.3 Types of Network-Based Detection Technique |
|
|
358 | (1) |
|
25.3.3.1 Signature-Based (or Pattern-Matching) Intrusion Detection Systems (SIDS) |
|
|
358 | (1) |
|
25.3.3.2 Anomaly-Based Intrusion Detection Systems (AIDS) |
|
|
358 | (1) |
|
25.3.3.3 Hybrid Intrusion Detection System |
|
|
358 | (1) |
|
|
359 | (1) |
|
25.5 Recent Improved Solutions to Intrusion Detection |
|
|
360 | (1) |
|
25.5.1 Based on Data Mining and Machine Learning Methods |
|
|
361 | (1) |
|
|
361 | (1) |
|
25.5.3 Evolutionary Methods and Optimization Techniques |
|
|
361 | (1) |
|
25.6 Analysis of Exiting IDS Based on Technique Used |
|
|
361 | (4) |
|
25.7 Analysis of Existing IDS in Different Domains |
|
|
365 | (3) |
|
|
366 | (1) |
|
25.7.2 IDS in Cloud Computing Environment |
|
|
367 | (1) |
|
25.7.3 IDS in Web Applications |
|
|
367 | (1) |
|
25.7.4 IDS for WSN (Wireless Sensor Network) |
|
|
368 | (1) |
|
|
368 | (5) |
|
|
368 | (5) |
|
Part 4 Communication and Networks |
|
|
373 | (70) |
|
26 Green Communication Technology Management for Sustainability in Organization |
|
|
375 | (12) |
|
|
|
|
375 | (3) |
|
26.2 Sustainability of Green ICT |
|
|
378 | (1) |
|
26.3 Going Green and Sustainability |
|
|
378 | (1) |
|
26.4 ICT: Green and Sustainability |
|
|
379 | (1) |
|
26.5 Benefits: Green IT Practices |
|
|
380 | (1) |
|
26.6 Management Perspective: Green IT |
|
|
381 | (1) |
|
26.7 Biodegradable Device Components |
|
|
381 | (3) |
|
|
384 | (3) |
|
|
385 | (2) |
|
27 A Means of Futuristic Communication: A Review |
|
|
387 | (14) |
|
|
|
|
|
387 | (5) |
|
27.1.1 Internet of Things |
|
|
387 | (1) |
|
27.1.1.1 Characteristics of IoT |
|
|
387 | (1) |
|
27.1.1.2 Different Forms of IoT |
|
|
388 | (1) |
|
27.1.1.3 IoT Applications |
|
|
388 | (1) |
|
27.1.1.4 Challenges in IoT |
|
|
388 | (1) |
|
27.1.2 IoT and Cloud Computing |
|
|
389 | (1) |
|
27.1.2.1 Issues With IoT Cloud Platforms |
|
|
390 | (1) |
|
|
390 | (1) |
|
27.1.3.1 Analysis of Data in Fog Computing |
|
|
391 | (1) |
|
|
391 | (1) |
|
27.1.5 Comparative Analysis of Cloud, Fog and Edge Computing |
|
|
391 | (1) |
|
|
392 | (2) |
|
|
394 | (1) |
|
|
394 | (2) |
|
27.5 Conclusion and Future Scope |
|
|
396 | (5) |
|
|
397 | (4) |
|
28 Experimental Evaluation of Security and Privacy in GSM Network Using RTL-SDR |
|
|
401 | (12) |
|
|
|
|
|
401 | (1) |
|
|
402 | (1) |
|
28.3 Privacy in Telecommunication |
|
|
403 | (1) |
|
28.4 A Take on User Privacy: GSM Exploitation |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
28.4.1.2 Soft Downgrade to GSM |
|
|
405 | (1) |
|
|
405 | (1) |
|
|
405 | (1) |
|
28.5.1 Hardware and Software |
|
|
405 | (1) |
|
28.5.2 Implementation Algorithm and Procedure |
|
|
405 | (1) |
|
28.6 Results and Analysis |
|
|
406 | (4) |
|
|
410 | (3) |
|
|
410 | (3) |
|
29 A Novel Consumer-Oriented Trust Model in E-Commerce |
|
|
413 | (14) |
|
|
|
|
413 | (1) |
|
|
414 | (1) |
|
|
415 | (3) |
|
|
416 | (1) |
|
29.3.2 Statistics of E-Commerce |
|
|
417 | (1) |
|
29.3.2.1 Case Study: Consumer Trust Violation |
|
|
418 | (1) |
|
29.4 Categorization of E-Commerce in Different Spheres |
|
|
418 | (3) |
|
|
418 | (1) |
|
29.4.2 Travel and Hospitality |
|
|
419 | (1) |
|
29.4.3 Business to Customer (B2C) |
|
|
419 | (1) |
|
29.4.4 Education Technology |
|
|
419 | (1) |
|
29.4.5 Payments and Wallets |
|
|
419 | (1) |
|
29.4.6 Business to Business (B2B) |
|
|
419 | (1) |
|
|
420 | (1) |
|
29.4.8 Financial Technology |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
29.4.12 Logistics Technology |
|
|
421 | (1) |
|
29.4.13 Online Classified and Services |
|
|
421 | (1) |
|
29.5 Categorization of E-Commerce in Different Spheres and Investment in Last Five Years |
|
|
421 | (1) |
|
|
422 | (2) |
|
29.6.1 Different Components of Web Trust Model |
|
|
422 | (1) |
|
29.6.2 A Novel Consumer-Oriented Trust Model |
|
|
422 | (2) |
|
|
424 | (3) |
|
|
424 | (3) |
|
30 Data Mining Approaches for Profitable Business Decisions |
|
|
427 | (16) |
|
|
|
|
|
30.1 Introduction to Data Mining and Business Intelligence |
|
|
427 | (1) |
|
30.2 Outline of Data Mining and BI |
|
|
428 | (3) |
|
|
430 | (1) |
|
30.3 Leading Techniques used for Data Mining in BI |
|
|
431 | (3) |
|
30.3.1 Classification Analysis |
|
|
431 | (1) |
|
|
431 | (1) |
|
30.3.3 Regression Analysis |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
30.3.7 Sequential Patterns |
|
|
432 | (1) |
|
|
433 | (1) |
|
|
433 | (1) |
|
30.3.10 Association Rule Mining |
|
|
433 | (1) |
|
30.4 Some Implementations of Data Mining in Business |
|
|
434 | (2) |
|
30.4.1 Banking and Finance |
|
|
434 | (1) |
|
30.4.2 Relationship Management |
|
|
434 | (1) |
|
30.4.3 Targeted Marketing |
|
|
434 | (1) |
|
|
435 | (1) |
|
30.4.5 Manufacturing and Production |
|
|
435 | (1) |
|
30.4.6 Market Basket Analysis |
|
|
435 | (1) |
|
|
435 | (1) |
|
30.4.8 Customer Profitability |
|
|
435 | (1) |
|
30.4.9 Customer Attrition and Channel Optimization |
|
|
436 | (1) |
|
30.5 Tabulated Attributes of Popular Data Mining Technique |
|
|
436 | (4) |
|
30.5.1 Classification Analysis |
|
|
436 | (1) |
|
|
436 | (2) |
|
30.5.3 Anomaly or Outlier Detection |
|
|
438 | (1) |
|
30.5.4 Regression Analysis |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
438 | (1) |
|
30.5.7 Sequential Pattern |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
30.5.10 Association Rule Learning |
|
|
439 | (1) |
|
|
440 | (3) |
|
|
440 | (3) |
|
Part 5 Latest Trends in Sustainable Computing Techniques |
|
|
443 | (80) |
|
31 Survey on Data Deduplication Techniques for Securing Data in Cloud Computing Environment |
|
|
445 | (16) |
|
|
|
|
|
445 | (6) |
|
|
445 | (1) |
|
31.1.2 Cloud Computing Features |
|
|
446 | (1) |
|
31.1.3 Services Provided by Cloud Computing |
|
|
446 | (1) |
|
31.1.4 Types of Clouds Based on Deployment Model |
|
|
447 | (1) |
|
31.1.5 Cloud Computing Security Challenges |
|
|
447 | (1) |
|
31.1.5.1 Infrastructure-as-a-Service (IaaS) |
|
|
447 | (2) |
|
31.1.5.2 Platform-as-a-Service (PaaS) |
|
|
449 | (1) |
|
31.1.5.3 Software-as-a-Service (SaaS) |
|
|
449 | (1) |
|
31.1.5.4 Hardware-as-a-Service (HaaS) |
|
|
450 | (1) |
|
31.1.5.5 Data-as-a-Service (DaaS) |
|
|
450 | (1) |
|
|
451 | (2) |
|
31.2.1 Data Deduplication Introduction |
|
|
451 | (1) |
|
31.2.2 Key Design Criteria for Deduplication Techniques |
|
|
451 | (1) |
|
31.2.2.1 Information Granularity |
|
|
451 | (1) |
|
31.2.2.2 Deduplication Area |
|
|
452 | (1) |
|
31.2.2.3 System Architecture |
|
|
452 | (1) |
|
31.2.2.4 Duplicate Check Boundary |
|
|
453 | (1) |
|
|
453 | (1) |
|
31.4 Assessment Rules of Secure Deduplication Plans |
|
|
454 | (1) |
|
31.5 Open Security Problems and Difficulties |
|
|
455 | (2) |
|
31.5.1 Data Ownership the Board |
|
|
455 | (1) |
|
31.5.2 Achieving Semantically Secure Deduplication |
|
|
456 | (1) |
|
31.5.3 POW in Decentralized Deduplication Structures |
|
|
456 | (1) |
|
31.5.4 New Security Risks on Deduplication |
|
|
457 | (1) |
|
|
457 | (4) |
|
|
457 | (4) |
|
32 Procedural Music Generation |
|
|
461 | (8) |
|
|
|
|
|
461 | (1) |
|
|
462 | (1) |
|
|
463 | (1) |
|
|
463 | (2) |
|
|
465 | (2) |
|
|
467 | (2) |
|
|
467 | (2) |
|
33 Detecting Photoshopped Faces Using Deep Learning |
|
|
469 | (12) |
|
|
|
|
469 | (2) |
|
|
471 | (1) |
|
|
472 | (4) |
|
33.3.1 Generating Dataset of Fake Images |
|
|
473 | (3) |
|
|
476 | (2) |
|
33.4.1 Details of the Training Procedure |
|
|
477 | (1) |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
479 | (2) |
|
|
479 | (2) |
|
34 A Review of SQL Injection Attack and Various Detection Approaches |
|
|
481 | (10) |
|
|
|
|
|
481 | (2) |
|
34.2 SQL Injection Attack and Its Types |
|
|
483 | (1) |
|
|
484 | (3) |
|
|
487 | (1) |
|
|
488 | (3) |
|
|
488 | (3) |
|
35 Futuristic Communication Technologies |
|
|
491 | (20) |
|
|
|
|
|
|
|
491 | (2) |
|
35.2 Types of Communication Medium |
|
|
493 | (1) |
|
|
493 | (1) |
|
35.3 Types of Wired Connections |
|
|
493 | (2) |
|
35.3.1 Implementation of Wired (Physical Mode) Technology |
|
|
494 | (1) |
|
35.3.2 Limitations of Wired Technology |
|
|
494 | (1) |
|
35.4 Wireless Communication |
|
|
495 | (2) |
|
35.4.1 Types of Wireless Technology |
|
|
495 | (2) |
|
35.4.2 Applications of Wireless Technology |
|
|
497 | (1) |
|
35.4.3 Limitations of Wireless Technology |
|
|
497 | (1) |
|
35.5 Optical Fiber Communication |
|
|
497 | (1) |
|
35.5.1 Types of Optical Fiber Communication |
|
|
497 | (1) |
|
35.5.2 Applications of Optical Fiber Communication |
|
|
498 | (1) |
|
35.5.3 Limitations of Optical Fiber Communication |
|
|
498 | (1) |
|
|
498 | (2) |
|
35.6.1 Types of Radar Communication |
|
|
499 | (1) |
|
35.6.2 Applications of RADAR Communication |
|
|
500 | (1) |
|
35.6.3 Limitations of RADAR Communication |
|
|
500 | (1) |
|
35.7 Green Communication Technology, Its Management and Its Sustainability |
|
|
500 | (2) |
|
35.8 Space Air Ground Integrated Communication |
|
|
502 | (1) |
|
35.9 Ubiquitous Communication |
|
|
503 | (1) |
|
35.10 Network Planning, Management, Security |
|
|
504 | (2) |
|
35.11 Cognitive Radio Communication |
|
|
506 | (1) |
|
35.12 Types of Cognitive Radio Communication |
|
|
507 | (1) |
|
35.13 Next Generation Communications and Applications |
|
|
507 | (1) |
|
35.14 Smart Energy Management |
|
|
508 | (3) |
|
|
509 | (2) |
|
36 An Approach for Load Balancing Through Genetic Algorithm |
|
|
511 | (12) |
|
|
|
|
|
511 | (1) |
|
|
512 | (1) |
|
36.3 Background and Related Technology |
|
|
513 | (3) |
|
|
513 | (1) |
|
36.3.2 Load Balancing Metrics |
|
|
514 | (1) |
|
36.3.3 Classification of Load Balancing Algorithms |
|
|
515 | (1) |
|
|
516 | (2) |
|
|
518 | (2) |
|
|
518 | (1) |
|
36.5.2 Flowchart of Proposed Strategy |
|
|
519 | (1) |
|
36.6 Experimental Setup and Results Analysis |
|
|
520 | (3) |
|
36.6.1 Data Pre-Processing |
|
|
520 | (1) |
|
36.6.2 Experimental Setup |
|
|
520 | (1) |
|
|
521 | (2) |
|
|
523 | (1) |
References |
|
523 | (2) |
Index |
|
525 | |