|
|
xiii | |
|
|
xvii | |
Preface |
|
xix | |
|
List of Notation and Terminology |
|
|
xxv | |
|
|
1 | (30) |
|
|
1 | (1) |
|
1.2 Presentation of the Data |
|
|
2 | (7) |
|
|
9 | (2) |
|
1.4 The Covariance Function and Semivariogram |
|
|
11 | (5) |
|
|
11 | (2) |
|
1.4.2 Regularly Spaced Data |
|
|
13 | (1) |
|
1.4.3 Irregularly Spaced Data |
|
|
14 | (2) |
|
1.5 Behavior of the Sample Semivariogram |
|
|
16 | (6) |
|
1.6 Some Special Features of Spatial Analysis |
|
|
22 | (9) |
|
|
27 | (4) |
|
2 Stationary Random Fields |
|
|
31 | (42) |
|
|
31 | (1) |
|
2.2 Second Moment Properties |
|
|
32 | (2) |
|
2.3 Positive Definiteness and the Spectral Representation |
|
|
34 | (2) |
|
2.4 Isotropic Stationary Random Fields |
|
|
36 | (5) |
|
2.5 Construction of Stationary Covariance Functions |
|
|
41 | (2) |
|
|
43 | (2) |
|
2.7 Other Examples of Isotropic Stationary Covariance Functions |
|
|
45 | (3) |
|
2.8 Construction of Nonstationary Random Fields |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (2) |
|
|
51 | (2) |
|
2.11 Lattice Random Fields |
|
|
53 | (3) |
|
|
56 | (2) |
|
2.12.1 Models on the Continuous Torus |
|
|
56 | (1) |
|
2.12.2 Models on the Lattice Torus |
|
|
57 | (1) |
|
2.13 Long-range Correlation |
|
|
58 | (3) |
|
|
61 | (12) |
|
|
61 | (1) |
|
2.14.2 The Direct Approach |
|
|
61 | (1) |
|
|
62 | (4) |
|
|
66 | (1) |
|
|
67 | (6) |
|
3 Intrinsic and Generalized Random Fields |
|
|
73 | (42) |
|
|
73 | (1) |
|
3.2 Intrinsic Random Fields of Order k = 0 |
|
|
74 | (6) |
|
3.3 Characterizations of Semivariograms |
|
|
80 | (3) |
|
3.4 Higher Order Intrinsic Random Fields |
|
|
83 | (3) |
|
3.5 Registration of Higher Order Intrinsic Random Fields |
|
|
86 | (1) |
|
3.6 Generalized Random Fields |
|
|
87 | (4) |
|
3.7 Generalized Intrinsic Random Fields of Intrinsic Order k ≥ 0 |
|
|
91 | (1) |
|
3.8 Spectral Theory for Intrinsic and Generalized Processes |
|
|
91 | (4) |
|
3.9 Regularization for Intrinsic and Generalized Processes |
|
|
95 | (1) |
|
|
96 | (4) |
|
|
100 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (13) |
|
|
104 | (11) |
|
4 Autoregression and Related Models |
|
|
115 | (44) |
|
|
115 | (3) |
|
|
118 | (2) |
|
|
120 | (2) |
|
|
120 | (1) |
|
4.3.2 Continuously Indexed Case |
|
|
121 | (1) |
|
4.4 Finite Symmetric Neighborhoods of the Origin in Zd |
|
|
122 | (2) |
|
4.5 Simultaneous Autoregressions (SARs) |
|
|
124 | (3) |
|
|
124 | (1) |
|
4.5.2 Continuously Indexed Random Fields |
|
|
125 | (2) |
|
4.6 Conditional Autoregressions (CARs) |
|
|
127 | (7) |
|
|
128 | (2) |
|
4.6.2 Iterated SARs and CARs |
|
|
130 | (1) |
|
|
131 | (1) |
|
4.6.4 CARs on a Lattice Torus |
|
|
132 | (1) |
|
|
132 | (2) |
|
4.7 Limits of CAR Models Under Fine Lattice Spacing |
|
|
134 | (1) |
|
4.8 Unilateral Autoregressions for Lattice Random Fields |
|
|
135 | (5) |
|
|
135 | (1) |
|
|
136 | (3) |
|
4.8.3 Quadrant Autoregressions |
|
|
139 | (1) |
|
4.9 Markov Random Fields (MRFs) |
|
|
140 | (9) |
|
4.9.1 The Spatial Markov Property |
|
|
140 | (3) |
|
4.9.2 The Subset Expansion of the Negative Potential Function |
|
|
143 | (2) |
|
4.9.3 Characterization of Markov Random Fields in Terms of Cliques |
|
|
145 | (2) |
|
|
147 | (2) |
|
|
149 | (10) |
|
|
149 | (1) |
|
|
150 | (1) |
|
4.10.3 Markov Random Fields |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (8) |
|
5 Estimation of Spatial Structure |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (4) |
|
5.2.1 One-dimensional Case |
|
|
160 | (1) |
|
5.2.2 Two-dimensional Case |
|
|
161 | (1) |
|
|
162 | (2) |
|
|
164 | (2) |
|
5.3.1 Domain of the Spatial Process |
|
|
164 | (1) |
|
5.3.2 Model Specification |
|
|
164 | (1) |
|
|
165 | (1) |
|
5.4 Exploratory and Graphical Methods |
|
|
166 | (2) |
|
5.5 Maximum Likelihood for Stationary Models |
|
|
168 | (5) |
|
5.5.1 Maximum Likelihood Estimates - Known Mean |
|
|
169 | (2) |
|
5.5.2 Maximum Likelihood Estimates-Unknown Mean |
|
|
171 | (1) |
|
5.5.3 Fisher Information Matrix and Outfill Asymptotics |
|
|
172 | (1) |
|
5.6 Parameterization Issues for the Matern Scheme |
|
|
173 | (1) |
|
5.7 Maximum Likelihood Examples for Stationary Models |
|
|
174 | (5) |
|
5.8 Restricted Maximum Likelihood (REML) |
|
|
179 | (1) |
|
5.9 Vecchia's Composite Likelihood |
|
|
180 | (2) |
|
5.10 REML Revisited with Composite Likelihood |
|
|
182 | (3) |
|
5.11 Spatial Linear Model |
|
|
185 | (3) |
|
|
186 | (2) |
|
5.11.2 Outfill Asymptotics for the Spatial Linear Model |
|
|
188 | (1) |
|
5.12 REML for the Spatial Linear Model |
|
|
188 | (1) |
|
5.13 Intrinsic Random Fields |
|
|
189 | (3) |
|
5.14 Infill Asymptotics and Fractal Dimension |
|
|
192 | (9) |
|
|
195 | (6) |
|
6 Estimation for Lattice Models |
|
|
201 | (30) |
|
|
201 | (2) |
|
|
203 | (2) |
|
6.3 The AR(1) Process on Z |
|
|
205 | (3) |
|
6.4 Moment Methods for Lattice Data |
|
|
208 | (4) |
|
6.4.1 Moment Methods for Unilateral Autoregressions (UARs) |
|
|
209 | (1) |
|
6.4.2 Moment Estimators for Conditional Autoregression (CAR) Models |
|
|
210 | (2) |
|
6.5 Approximate Likelihoods for Lattice Data |
|
|
212 | (3) |
|
6.6 Accuracy of the Maximum Likelihood Estimator |
|
|
215 | (3) |
|
6.7 The Moment Estimator for a CAR Model |
|
|
218 | (13) |
|
|
219 | (12) |
|
|
231 | (52) |
|
|
231 | (2) |
|
7.2 The Prediction Problem |
|
|
233 | (3) |
|
|
236 | (2) |
|
|
238 | (2) |
|
|
240 | (1) |
|
7.6 Further Details for the Universal Kriging Predictor |
|
|
241 | (7) |
|
|
241 | (1) |
|
7.6.2 Projection Representation of the Transfer Matrices |
|
|
242 | (2) |
|
7.6.3 Second Derivation of the Universal Kriging Predictor |
|
|
244 | (1) |
|
7.6.4 A Bordered Matrix Equation for the Transfer Matrices |
|
|
245 | (1) |
|
7.6.5 The Augmented Matrix Representation of the Universal Kriging Predictor |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
248 | (5) |
|
7.8 Intrinsic Random Fields |
|
|
253 | (3) |
|
7.8.1 Formulas for the Kriging Predictor and Kriging Variance |
|
|
253 | (1) |
|
7.8.2 Conditionally Positive Definite Matrices |
|
|
254 | (2) |
|
|
256 | (2) |
|
|
258 | (1) |
|
7.11 Kriging with Derivative Information |
|
|
259 | (3) |
|
|
262 | (4) |
|
|
262 | (2) |
|
7.12.2 Details for Simple Bayesian Kriging |
|
|
264 | (1) |
|
7.12.3 Details for Bayesian Kriging with Drift |
|
|
264 | (2) |
|
7.13 Kriging and Machine Learning |
|
|
266 | (3) |
|
7.14 The Link Between Kriging and Splines |
|
|
269 | (5) |
|
7.14.1 Nonparametric Regression |
|
|
269 | (2) |
|
7.14.2 Interpolating Splines |
|
|
271 | (2) |
|
7.14.3 Comments on Interpolating Splines |
|
|
273 | (1) |
|
|
274 | (1) |
|
7.15 Reproducing Kernel Hilbert Spaces |
|
|
274 | (1) |
|
|
275 | (8) |
|
|
277 | (6) |
|
|
283 | (20) |
|
|
283 | (1) |
|
8.2 Log-normal Random Fields |
|
|
284 | (1) |
|
8.3 Generalized Linear Spatial Mixed Models (GLSMMs) |
|
|
285 | (1) |
|
8.4 Bayesian Hierarchical Modeling and Inference |
|
|
286 | (1) |
|
|
287 | (4) |
|
8.6 Spatial-temporal Models |
|
|
291 | (3) |
|
8.6.1 General Considerations |
|
|
291 | (1) |
|
|
292 | (2) |
|
8.7 Clamped Plate Splines |
|
|
294 | (1) |
|
8.8 Gaussian Markov Random Field Approximations |
|
|
295 | (1) |
|
8.9 Designing a Monitoring Network |
|
|
296 | (7) |
|
|
298 | (5) |
|
Appendix A Mathematical Background |
|
|
303 | (44) |
|
A.1 Domains for Sequences and Functions |
|
|
303 | (2) |
|
A.2 Classes of Sequences and Functions |
|
|
305 | (1) |
|
A.2.1 Functions on the Domain Rd |
|
|
305 | (1) |
|
A.2.2 Sequences on the Domain Zd |
|
|
305 | (1) |
|
A.2.3 Classes of Functions on the Domain Sd1 |
|
|
306 | (1) |
|
A.2.4 Classes of Sequences on the Domain ZdN, Where N = (n[ 1], ..., n[ d]) |
|
|
306 | (1) |
|
|
306 | (7) |
|
A.3.1 The Spectral Decomposition Theorem |
|
|
306 | (1) |
|
A.3.2 Moore--Penrose Generalized Inverse |
|
|
307 | (1) |
|
A.3.3 Orthogonal Projection Matrices |
|
|
308 | (1) |
|
A.3.4 Partitioned Matrices |
|
|
308 | (1) |
|
|
309 | (1) |
|
A.3.6 Woodbury Formula for a Matrix Inverse |
|
|
310 | (1) |
|
|
311 | (1) |
|
A.3.8 Toeplitz and Circulant Matrices |
|
|
311 | (1) |
|
A.3.9 Tensor Product Matrices |
|
|
312 | (1) |
|
A.3.10 The Spectral Decomposition and Tensor Products |
|
|
313 | (1) |
|
A.3.11 Matrix Derivatives |
|
|
313 | (1) |
|
|
313 | (2) |
|
A.5 Properties of the Fourier Transform |
|
|
315 | (3) |
|
A.6 Generalizations of the Fourier Transform |
|
|
318 | (1) |
|
A.7 Discrete Fourier Transform and Matrix Algebra |
|
|
318 | (4) |
|
A.7.1 DFT in d = 1 Dimension |
|
|
318 | (1) |
|
A.7.2 Properties of the Unitary Matrix G, d = 1 |
|
|
319 | (1) |
|
A.7.3 Circulant Matrices and the DFT, d = 1 |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
322 | (1) |
|
A.8 Discrete Cosine Transform (DCT) |
|
|
322 | (2) |
|
A.8.1 One-dimensional Case |
|
|
322 | (1) |
|
|
323 | (1) |
|
A.8.3 Indexing for the Discrete Fourier and Cosine Transforms |
|
|
323 | (1) |
|
A.9 Periodic Approximations to Sequences |
|
|
324 | (1) |
|
A.10 Structured Matrices in d = 1 Dimension |
|
|
325 | (2) |
|
A.11 Matrix Approximations for an Inverse Covariance Matrix |
|
|
327 | (5) |
|
A.11.1 The Inverse Covariance Function |
|
|
328 | (2) |
|
A.11.2 The Toeplitz Approximation to Σ-1 |
|
|
330 | (1) |
|
A.11.3 The Circulant Approximation to Σ-1 |
|
|
330 | (1) |
|
A.11.4 The Folded Circulant Approximation to Σ-1 |
|
|
330 | (1) |
|
A.11.5 Comments on the Approximations |
|
|
331 | (1) |
|
|
332 | (1) |
|
A.12 Maximum Likelihood Estimation |
|
|
332 | (6) |
|
A.12.1 General Considerations |
|
|
332 | (1) |
|
A.12.2 The Multivariate Normal Distribution and the Spatial Linear Model |
|
|
333 | (2) |
|
A.12.3 Change of Variables |
|
|
335 | (1) |
|
A.12.4 Profile Log-likelihood |
|
|
335 | (1) |
|
A.12.5 Confidence Intervals |
|
|
336 | (1) |
|
A.12.6 Linked Parameterization |
|
|
337 | (1) |
|
|
338 | (1) |
|
A.13 Bias in Maximum Likelihood Estimation |
|
|
338 | (9) |
|
|
338 | (2) |
|
A.13.2 The Spatial Linear Model |
|
|
340 | (7) |
|
Appendix B A Brief History of the Spatial Linear Model and the Gaussian Process Approach |
|
|
347 | (8) |
|
|
347 | (1) |
|
|
348 | (1) |
|
B.3 Geostatistics at Leeds 1977--1987 |
|
|
349 | (3) |
|
B.3.1 Courses, Publications, Early Dissemination |
|
|
349 | (2) |
|
B.3.2 Numerical Problems with Maximum Likelihood |
|
|
351 | (1) |
|
B.4 Frequentist vs. Bayesian Inference |
|
|
352 | (3) |
References and Author Index |
|
355 | (12) |
Index |
|
367 | |