Muutke küpsiste eelistusi

E-raamat: Statistical Methods for Handling Incomplete Data

  • Formaat: 380 pages
  • Ilmumisaeg: 18-Nov-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000466294
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 380 pages
  • Ilmumisaeg: 18-Nov-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000466294

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Features

  • Uses the mean score equation as a building block for developing the theory for missing data analysis
  • Provides comprehensive coverage of computational techniques for missing data analysis
  • Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation
  • Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data
  • Describes a survey sampling application
  • Updated with a new chapter on Data Integration
    • Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation
  • The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.



    Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. This book covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

    Arvustused

    "As a general comment, I must say that it is probably one of the most extensive, detailed and complete sources of information on the most up-to-date methods to deal with missing data, from simple imputation methods to more complex analysis techniques that take missingness into account. The book is well organized in 12 chapters that although could be read independently based on the readers needs/interest, it does have a hierarchy that makes sense going from more simple early chapters to more complex subjects later in the book." ~David Manteigas, ISCB Book Reviews

    1. Introduction
    2. Likelihood-based Approach
    3. Computation
    4. Imputation
    5. Multiple Imputation
    6. Fractional Imputation
    7. Propensity Scoring Approach
    8. Nonignorable Missing Data
    9. Longitudinal and Clustered Data
    10. Application to Survey Sampling
    11. Data Integration
    12. Advanced Topics
    Jae Kwang Kim is a LAS deans professor in the Department of Statistics at Iowa State University. He is a fellow of American Statistical Association (ASA) and Institute of Mathematical Statistics (IMS). He is the recipient of 2015 Gertude M. Cox award, sponsored by Washington Statistical Society and RTI international.

    Jun Shao is a professor in the Department of Statistics at University of Wisconsin Madison. He is a fellow of ASA and IMS, a former president of International Chinese Statistical Association and currently the founding editor of Statistical Theory and Related Fields.