|
|
xi | |
|
|
xiii | |
Preface |
|
xv | |
|
|
1 | (4) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (2) |
|
2 Likelihood-Based Approach |
|
|
5 | (26) |
|
|
5 | (6) |
|
|
11 | (6) |
|
|
17 | (3) |
|
|
20 | (11) |
|
|
31 | (46) |
|
|
31 | (8) |
|
3.2 Factoring Likelihood Approach |
|
|
39 | (8) |
|
|
47 | (11) |
|
3.4 Monte Carlo Computation |
|
|
58 | (5) |
|
|
63 | (4) |
|
|
67 | (10) |
|
|
77 | (28) |
|
|
77 | (2) |
|
|
79 | (9) |
|
4.3 Variance Estimation after Imputation |
|
|
88 | (7) |
|
4.4 Replication Variance Estimation |
|
|
95 | (10) |
|
|
105 | (26) |
|
5.1 Review of Bayesian Inference |
|
|
105 | (5) |
|
5.2 MI: Bayesian Justification |
|
|
110 | (2) |
|
5.3 MI: Frequentist Justification |
|
|
112 | (9) |
|
5.4 MI Using Mixture Models |
|
|
121 | (4) |
|
5.5 MI for General Purpose Estimation |
|
|
125 | (6) |
|
|
131 | (30) |
|
6.1 Parametric Fractional Imputation |
|
|
132 | (12) |
|
6.2 Nonparametric Approach |
|
|
144 | (5) |
|
6.3 Semiparametric Fractional Imputation |
|
|
149 | (2) |
|
6.4 FI Using Mixture Models |
|
|
151 | (3) |
|
6.5 FI for Multivariate Categorical Data |
|
|
154 | (4) |
|
|
158 | (3) |
|
7 Propensity Scoring Approach |
|
|
161 | (38) |
|
|
161 | (6) |
|
7.2 Regression Weighting Method |
|
|
167 | (3) |
|
7.3 Propensity Score Method |
|
|
170 | (8) |
|
|
178 | (5) |
|
7.5 Maximum Entropy Method |
|
|
183 | (4) |
|
7.6 Doubly Robust Estimation |
|
|
187 | (4) |
|
7.7 Empirical Likelihood Method |
|
|
191 | (3) |
|
|
194 | (5) |
|
8 Nonignorable Missing Data |
|
|
199 | (32) |
|
|
199 | (4) |
|
8.2 Conditional Likelihood Approach |
|
|
203 | (4) |
|
8.3 Pseudo Likelihood Approach |
|
|
207 | (2) |
|
|
209 | (6) |
|
8.5 Exponential Tilting Model |
|
|
215 | (4) |
|
8.6 Latent Variable Approach |
|
|
219 | (2) |
|
|
221 | (4) |
|
8.8 Capture-Recapture Experiment |
|
|
225 | (6) |
|
9 Longitudinal and Clustered Data |
|
|
231 | (34) |
|
9.1 Ignorable Missing Data |
|
|
231 | (2) |
|
9.2 Nonignorable Monotone Missing Data |
|
|
233 | (9) |
|
|
233 | (1) |
|
9.2.2 Nonparametric p(y | x) |
|
|
234 | (4) |
|
9.2.3 Nonparametric Propensity |
|
|
238 | (4) |
|
9.3 Past-Value-Dependent Missing Data |
|
|
242 | (13) |
|
9.3.1 Three Different Approaches |
|
|
242 | (1) |
|
9.3.2 Imputation Models under Past-Value-Dependent Nonmonotone Missing |
|
|
243 | (3) |
|
9.3.3 Nonparametric Regression Imputation |
|
|
246 | (1) |
|
9.3.4 Dimension Reduction |
|
|
247 | (2) |
|
|
249 | (2) |
|
9.3.6 Wisconsin Diabetes Registry Study |
|
|
251 | (4) |
|
9.4 Random-Effect-Dependent Missing Data |
|
|
255 | (10) |
|
9.4.1 Three Existing Approaches |
|
|
255 | (3) |
|
|
258 | (2) |
|
|
260 | (2) |
|
9.4.4 Modification of Diet in Renal Disease |
|
|
262 | (3) |
|
10 Application to Survey Sampling |
|
|
265 | (34) |
|
|
265 | (3) |
|
10.2 Calibration Estimation |
|
|
268 | (4) |
|
10.3 Propensity Score Weighting Method |
|
|
272 | (5) |
|
|
277 | (2) |
|
10.5 Fractional Imputation |
|
|
279 | (5) |
|
10.6 Fractional Hot Deck Imputation |
|
|
284 | (3) |
|
10.7 Imputation for Two-Phase Sampling |
|
|
287 | (3) |
|
10.8 Synthetic Data Imputation |
|
|
290 | (9) |
|
|
299 | (24) |
|
|
300 | (3) |
|
11.2 Propensity Score Method |
|
|
303 | (5) |
|
11.3 Nonparametric Propensity Score Approach |
|
|
308 | (3) |
|
11.4 Doubly Robust Method |
|
|
311 | (2) |
|
11.5 Statistical Matching |
|
|
313 | (2) |
|
11.6 Mass Imputation Using Multilevel Models |
|
|
315 | (3) |
|
11.7 Data Integration for Regression Analysis |
|
|
318 | (2) |
|
|
320 | (3) |
|
|
323 | (20) |
|
12.1 Smoothing Spline Imputation |
|
|
323 | (2) |
|
12.2 Kernel Ridge Regression Imputation |
|
|
325 | (3) |
|
12.3 KRR-Based Propensity Score Estimation |
|
|
328 | (4) |
|
|
332 | (1) |
|
12.5 Penalized Regression Imputation |
|
|
333 | (3) |
|
12.6 Sufficient Dimension Reduction |
|
|
336 | (3) |
|
12.7 Neural Network Model |
|
|
339 | (4) |
Bibliography |
|
343 | (18) |
Index |
|
361 | |