Acknowledgments |
|
xiii | |
Authors |
|
xv | |
Introduction: Challenges in the Application of Machine Learning Classification Methods |
|
xvii | |
|
|
|
1 Introduction To The Ai Framework |
|
|
3 | (6) |
|
1.1 Components Of The Ai Framework And Their Interaction |
|
|
3 | (2) |
|
1.2 Ai Framework In Detail |
|
|
5 | (2) |
|
1.2.1 Creating Training and Test Datasets |
|
|
5 | (1) |
|
1.2.2 Design of Experiments for a Classifier |
|
|
6 | (1) |
|
1.2.3 Firth Logistic Regression |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3 Sas Procedures For The Ai Framework Components |
|
|
7 | (1) |
|
1.4 R Libraries For The Ai Framework Components |
|
|
7 | (1) |
|
|
8 | (1) |
|
2 Supervised Machine Learning And Its Deployment In Sas And R |
|
|
9 | (20) |
|
|
9 | (1) |
|
2.2 Principles Of Supervised Machine Learning |
|
|
10 | (2) |
|
|
12 | (4) |
|
|
12 | (1) |
|
2.3.2 Neural Network Components |
|
|
13 | (1) |
|
2.3.2.1 Activation Function |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.3.3 R for Neural Networks |
|
|
16 | (1) |
|
2.4 Support Vector Machine |
|
|
16 | (6) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.4.5 Bias--Variance Trade-off and SVM Hyperparameters |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.5 Svm Modification Using Firth's Regression |
|
|
22 | (5) |
|
|
22 | (1) |
|
2.5.2 Logistic Regression |
|
|
23 | (1) |
|
2.5.3 Problem of Separation |
|
|
23 | (2) |
|
2.5.4 R for Firth's Regression |
|
|
25 | (1) |
|
2.5.5 SAS for Firth's Regression |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
27 | (2) |
|
3 Bootstrap Methods And Their Deployment In Sas And R |
|
|
29 | (12) |
|
|
29 | (1) |
|
3.2 Overview Of Bootstrap Methods |
|
|
30 | (7) |
|
3.2.1 The Basic Bootstrap |
|
|
31 | (1) |
|
3.2.2 Hypothesis Tests, Estimates, and Confidence Intervals |
|
|
32 | (2) |
|
|
34 | (1) |
|
3.2.4 The Parametric Bootstrap |
|
|
35 | (1) |
|
3.2.5 m-out-of-n Bootstrap |
|
|
36 | (1) |
|
3.2.6 Bootstrap Samples Similarity |
|
|
36 | (1) |
|
3.3 Implementation Of Bootstrap In Sas And R |
|
|
37 | (2) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
4 Outliers Detection And Its Deployment In Sas And R |
|
|
41 | (6) |
|
|
41 | (1) |
|
4.2 Outliers Detection And Treatment |
|
|
42 | (2) |
|
4.2.1 Minimum Covariance Determinant Method |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (2) |
|
5 Design Of Experiments And Its Deployment In Sas And R |
|
|
47 | (24) |
|
|
47 | (1) |
|
5.2 Application Of Doe In Ai Framework |
|
|
48 | (18) |
|
|
49 | (1) |
|
|
49 | (1) |
|
5.2.1.2 Experimental Unit |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
5.2.2.2 Statistical Replication |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
5.2.3 Full-Factorial Experiment |
|
|
50 | (7) |
|
5.2.4 Fractional Factorial Experiment |
|
|
57 | (1) |
|
5.2.5 Linear Mixed Models |
|
|
58 | (1) |
|
5.2.6 Factors and Response Variables in the AI Framework |
|
|
59 | (1) |
|
|
60 | (2) |
|
5.2.8 Analysis of Linear Mixed Model Using SAS |
|
|
62 | (3) |
|
5.2.9 Analysis of Linear Mixed Model Using R |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (4) |
|
|
|
6 Introduction To The Sas- And R-Based Table-Driven Environment |
|
|
71 | (18) |
|
6.1 Principles Of Code-Free Design |
|
|
71 | (1) |
|
6.2 The Data Dictionary Components For The Ai Framework |
|
|
72 | (4) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
6.2.4 Relational Data Structure |
|
|
73 | (1) |
|
|
74 | (1) |
|
6.2.6 Relations and Tables |
|
|
74 | (1) |
|
|
74 | (1) |
|
6.2.8 One-to-one Relationship |
|
|
75 | (1) |
|
6.2.9 One-to-many Relationship |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
6.3 Properties Of The Data Dictionary |
|
|
76 | (5) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
6.3.8 Process of Application Data Model Definition |
|
|
79 | (1) |
|
6.3.9 Features of the Data Dictionary |
|
|
80 | (1) |
|
6.3.10 The Components of the Optimization Framework and Their Definitions in the Data Dictionary |
|
|
81 | (1) |
|
6.4 Deployment Of Code-Free Design With Sas And R |
|
|
81 | (7) |
|
6.4.1 How to Generate Application Objects |
|
|
81 | (3) |
|
6.4.2 Generating R Datasets from the Data Dictionary Metadata |
|
|
84 | (2) |
|
6.4.3 SAS and R Interoperability |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
88 | (1) |
|
|
89 | (10) |
|
7.1 Overview Of Data Management |
|
|
89 | (9) |
|
|
89 | (1) |
|
7.1.1.1 The Input Data Dictionary |
|
|
89 | (1) |
|
7.1.1.2 Input and Structure Tables |
|
|
90 | (1) |
|
7.1.1.3 Outlier_Detection and Bias_Correction Tables |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
98 | (1) |
|
8 Design of Experiment for Machine Learning Component |
|
|
99 | (8) |
|
|
99 | (6) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
8.1.5 Hyperparameters_Domain Table |
|
|
102 | (1) |
|
|
102 | (1) |
|
8.1.7 Results_Metrics Table |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
9 "Contaminated" Training Datasets Component |
|
|
107 | (8) |
|
|
107 | (3) |
|
9.1.1 Contamination Table |
|
|
108 | (1) |
|
9.1.2 Cont_Experiment Table |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (4) |
|
|
|
10 Insurance Industry: Underwriters' Decision-Making Process |
|
|
115 | (20) |
|
|
115 | (1) |
|
10.2 Review Of Underwriters' Performance |
|
|
116 | (7) |
|
10.2.1 Metrics of Underwriters' Performance |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
116 | (1) |
|
10.2.1.3 Dynamic Conversion Rate |
|
|
117 | (1) |
|
|
118 | (1) |
|
10.2.2 Analysis of Underwriters' Performance |
|
|
119 | (1) |
|
10.2.2.1 Data Description |
|
|
119 | (1) |
|
10.2.2.2 Application Flow |
|
|
119 | (2) |
|
10.2.2.3 Dynamic Conversion Rate per Underwriter |
|
|
121 | (1) |
|
10.2.2.4 Time-to-Deal per Underwriter |
|
|
122 | (1) |
|
10.3 Traditional Approach To Knowledge Delivery |
|
|
123 | (1) |
|
10.4 Anatomy Of Artificial Intelligence Solution |
|
|
124 | (8) |
|
|
124 | (1) |
|
10.4.2 Classification Approach |
|
|
125 | (1) |
|
10.4.3 Bias-Variance Trade-Off and SVM Hyperparameters |
|
|
125 | (2) |
|
10.4.4 Building the Classifier |
|
|
127 | (3) |
|
10.4.5 "Contamination" of Training Datasets |
|
|
130 | (1) |
|
10.4.6 Experimental Results |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
132 | (3) |
|
11 Insurance Industry: Claims Modeling And Prediction |
|
|
135 | (20) |
|
|
135 | (1) |
|
|
136 | (1) |
|
11.3 The Cox Model For Claims Event Analysis |
|
|
136 | (2) |
|
11.4 Application Of The Cox Model For Claims Analysis |
|
|
138 | (14) |
|
11.4.1 Data Transformation |
|
|
139 | (2) |
|
11.4.2 Cox Model Assumption Validation |
|
|
141 | (3) |
|
11.4.3 Bayesian Machine Learning Approach |
|
|
144 | (1) |
|
11.4.4 Deployment with SAS |
|
|
144 | (2) |
|
11.4.5 Interpretation of Results |
|
|
146 | (6) |
|
|
152 | (1) |
|
|
153 | (2) |
Index |
|
155 | |