Preface |
|
iii | |
|
1 Computational optimization |
|
|
1 | (18) |
|
Computational optimization |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
Gradient-based optimization |
|
|
4 | (1) |
|
Steepest or gradient descent algorithm |
|
|
5 | (1) |
|
Conjugate gradient algorithms |
|
|
5 | (2) |
|
Optimizers for machine learning |
|
|
7 | (1) |
|
Stochastic gradient descent |
|
|
7 | (1) |
|
Stochastic gradient descent with momentum |
|
|
7 | (1) |
|
Levenberg-Marquardt algorithm |
|
|
8 | (4) |
|
Scaled conjugate gradient algorithm |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (2) |
|
2 Evolutionary Computation and Genetic Algorithm |
|
|
19 | (18) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
Proportionate roulette wheel selection |
|
|
22 | (1) |
|
Exponential ranking selection |
|
|
23 | (1) |
|
Crossover (recombination) operators |
|
|
23 | (1) |
|
Crossover operators for binary encoding |
|
|
23 | (1) |
|
Crossover operators for real-coded genetic algorithms |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
Maximum number of generations |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
Adaptive genetic algorithm |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
Chaotic differential evolution |
|
|
31 | (1) |
|
Differential evolution example |
|
|
32 | (1) |
|
Ackley function approximation |
|
|
32 | (1) |
|
|
33 | (4) |
|
3 Swarm Intelligence and Particle Swarm Optimization |
|
|
37 | (30) |
|
Particle swarm optimization algorithm |
|
|
37 | (2) |
|
|
39 | (1) |
|
Acceleration coefficients |
|
|
39 | (1) |
|
|
39 | (2) |
|
|
41 | (1) |
|
Maximum generation number |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
Global or fully connected |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
Tree or hierarchical topology |
|
|
44 | (1) |
|
Dynamic or adaptive topologies |
|
|
44 | (1) |
|
Boundary handling approaches |
|
|
45 | (1) |
|
|
45 | (1) |
|
Infinity or invisible wall |
|
|
45 | (1) |
|
Nearest or boundary or absorb |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
Michalewicz non-uniform mutation |
|
|
49 | (1) |
|
Chaotic PSO with Michalewicz mutation |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (2) |
|
PSO in neural network optimization |
|
|
57 | (1) |
|
|
57 | (1) |
|
PSO as topology optimizer |
|
|
57 | (1) |
|
Swarm optimization examples |
|
|
58 | (1) |
|
|
58 | (3) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (3) |
|
4 Ant Colony Optimization and Artificial Bee Colony |
|
|
67 | (20) |
|
Ant colony optimization (ACO) |
|
|
67 | (1) |
|
|
67 | (2) |
|
|
69 | (3) |
|
|
72 | (1) |
|
Rank-based ant system (RB-AS) |
|
|
73 | (1) |
|
Max-min ant system (MMAS) |
|
|
74 | (1) |
|
|
75 | (1) |
|
Artificial bee colony (ABC) |
|
|
76 | (1) |
|
Bee colony foraging behavior |
|
|
76 | (1) |
|
|
77 | (3) |
|
|
80 | (1) |
|
Boundary handling approaches |
|
|
81 | (1) |
|
|
82 | (5) |
|
5 Cuckoo Search and Bat Swarm Algorithm |
|
|
87 | (24) |
|
|
87 | (1) |
|
Cuckoo breeding behavior and Levy flights |
|
|
87 | (1) |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
91 | (3) |
|
Discrete binary cuckoo search |
|
|
94 | (1) |
|
Hybrid self-adaptive cuckoo search |
|
|
95 | (3) |
|
|
98 | (1) |
|
Bat algorithm inspiration |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
1st Chaotic bat algorithm |
|
|
102 | (1) |
|
2nd Chaotic bat algorithm |
|
|
103 | (1) |
|
3rd Chaotic bat algorithm |
|
|
103 | (1) |
|
Self-adaptive bat algorithm |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (1) |
|
Bat algorithm with double mutation |
|
|
105 | (1) |
|
|
105 | (1) |
|
Cauchy mutation operator modification |
|
|
106 | (1) |
|
Gaussian mutation operator |
|
|
107 | (1) |
|
|
107 | (4) |
|
6 Firefly Algorithm, Harmony Search and Cat |
|
|
111 | (20) |
|
|
|
111 | (3) |
|
Firefly algorithm variants |
|
|
114 | (1) |
|
Firefly algorithm with Levy flights |
|
|
114 | (2) |
|
Chaotic firefly algorithms |
|
|
116 | (1) |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
120 | (1) |
|
Improved harmony search algorithm |
|
|
120 | (1) |
|
|
121 | (2) |
|
|
123 | (1) |
|
|
123 | (1) |
|
Basic description of Cat Swarm Algorithm |
|
|
124 | (1) |
|
|
125 | (1) |
|
Binary discrete Cat algorithm |
|
|
125 | (1) |
|
Improved cat swarm optimization |
|
|
126 | (2) |
|
|
128 | (3) |
|
7 Grey Wolf, Whale and Grasshopper Optimization |
|
|
131 | (26) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
Attacking prey (exploitation) |
|
|
134 | (1) |
|
Search for prey (exploration) |
|
|
134 | (1) |
|
Grey wolf algorithm variants |
|
|
135 | (1) |
|
Binary grey wolf optimization |
|
|
135 | (4) |
|
Grey wolf with Levy flight |
|
|
139 | (2) |
|
Whale optimization algorithm |
|
|
141 | (1) |
|
|
141 | (1) |
|
Bubble-net attacking strategy (exploitation phase) |
|
|
142 | (3) |
|
Whale optimization variants |
|
|
145 | (1) |
|
Whale optimization with Levy flight |
|
|
145 | (2) |
|
Binary whale optimization algorithm |
|
|
147 | (1) |
|
Grasshopper optimization algorithm |
|
|
148 | (4) |
|
Grasshopper optimization variants |
|
|
152 | (1) |
|
Chaotic grasshopper optimization algorithm |
|
|
152 | (1) |
|
Improved grasshopper optimization algorithm |
|
|
153 | (1) |
|
|
154 | (3) |
|
8 Machine Learning Optimization Applications |
|
|
157 | (22) |
|
Artificial neural networks |
|
|
157 | (1) |
|
Weight optimization of a neural network |
|
|
158 | (1) |
|
Topology optimization of a neural network |
|
|
159 | (1) |
|
Neural network training with PSO, ACO, GA |
|
|
159 | (1) |
|
|
159 | (1) |
|
Genetic algorithm parameters |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
Feature selection with swarm intelligence and genetic algorithm |
|
|
161 | (1) |
|
|
161 | (1) |
|
Data analysis in machine learning |
|
|
161 | (1) |
|
Energy consumption dataset |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (2) |
|
Processing dataset outliers |
|
|
164 | (1) |
|
Cost-based feature selection with swarm intelligence |
|
|
165 | (1) |
|
Correlation-based feature selection with swarm intelligence |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (1) |
|
Genetic algorithm results |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
Chaotic harmony search results |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
Chaotic Cuckoo Search results |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
Predictions with reduced features, SVM and random forest |
|
|
174 | (1) |
|
Crime forecasting with PSO-SVM |
|
|
175 | (2) |
|
|
177 | (2) |
|
9 Swarm and Evolutionary Intelligence in Deep Learning |
|
|
179 | (15) |
|
Deep LSTM and Bi-LSTM networks |
|
|
179 | (2) |
|
Deep CNN (Convolutional Neural Networks) |
|
|
181 | (1) |
|
CNN and LSTM optimization |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
Genetic algorithm parameters |
|
|
184 | (1) |
|
Adaptive w-PSO parameters |
|
|
184 | (1) |
|
Bidirectional LSTM training parameters |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
Covid-19 chest X-ray dataset |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
References |
|
194 | (3) |
Index |
|
197 | |