Preface |
|
xv | |
Author |
|
xvii | |
|
PART 1 Characteristics of Switch/Routers with Crossbar Switch Fabrics |
|
|
|
Chapter 1 The Switch/Router: Integrated OSI Layers 2 and 3 Forwarding on a Single Platform |
|
|
3 | (44) |
|
|
3 | (1) |
|
1.2 Flow-Based Layer 3 Forwarding |
|
|
4 | (1) |
|
1.3 Network Topology-Based Layer 3 Forwarding |
|
|
5 | (3) |
|
1.4 Using Centralized or Distributed Forwarding Engines |
|
|
8 | (2) |
|
1.4.1 Forwarding Using a Centralized Forwarding Engine |
|
|
8 | (1) |
|
1.4.2 Forwarding Using Distributed Forwarding Engines |
|
|
9 | (1) |
|
1.5 Building the Layer 2 Forwarding Tables |
|
|
10 | (2) |
|
|
10 | (1) |
|
1.5.2 Synchronizing MAC Address Tables in a Distributed Forwarding Architecture |
|
|
11 | (1) |
|
1.5.3 History of MAC Address Changes |
|
|
11 | (1) |
|
1.6 Memory Architectures for Storing Forwarding Databases |
|
|
12 | (4) |
|
1.6.1 Content Addressable Memory (CAM) |
|
|
12 | (2) |
|
1.6.2 Ternary Content Addressable Memory (TCAM) |
|
|
14 | (2) |
|
1.7 Physical and Logical Interfaces on a Switch/Router |
|
|
16 | (28) |
|
1.7.1 Layer 2 (Switch) Interfaces |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.7.1.2 Access Ports and Tagged Packets |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.7.1.4 Port Channels or Port Groups |
|
|
20 | (1) |
|
1.7.2 Layer 3 (Routed) Interfaces |
|
|
21 | (1) |
|
1.7.2.1 Physical Layer 3 (Routed) Interfaces |
|
|
21 | (2) |
|
1.7.2.2 Logical Layer 3 (Routed) Interfaces (VLAN Interfaces or Switch Virtual Interfaces (SVIs)) |
|
|
23 | (2) |
|
|
25 | (2) |
|
1.7.4 Loopback Interfaces |
|
|
27 | (1) |
|
1.7.4.1 Local Communications |
|
|
28 | (1) |
|
1.7.4.2 Testing and Performance Analysis |
|
|
28 | (1) |
|
1.7.4.3 Device Identification |
|
|
28 | (1) |
|
1.7.4.4 Routing Information Maintenance |
|
|
29 | (2) |
|
|
31 | (1) |
|
1.7.5.1 Layer 3 Tunnel Interfaces/Ports Examples |
|
|
32 | (4) |
|
1.7.5.2 Layer 2 Tunnel Interfaces/Ports Examples |
|
|
36 | (4) |
|
|
40 | (1) |
|
1.7.6.1 Layer 2 and Layer 3 Port Channels |
|
|
41 | (2) |
|
|
43 | (1) |
|
1.7.6.3 Dynamic Configuration of Port Channels |
|
|
44 | (1) |
|
|
44 | (3) |
|
|
46 | (1) |
|
Chapter 2 Understanding Crossbar Switch Fabrics |
|
|
47 | (62) |
|
|
47 | (2) |
|
2.2 The Crossbar Switch Fabric |
|
|
49 | (12) |
|
2.2.1 Implementing a Crossbar Switch |
|
|
50 | (1) |
|
2.2.2 Building Multistage Switches |
|
|
51 | (4) |
|
2.2.3 Challenges in Building Larger Crosspoint Arrays |
|
|
55 | (3) |
|
2.2.4 Designing Today's System Interconnects |
|
|
58 | (3) |
|
2.3 Logical Architecture and Improving Data Transfer Throughput |
|
|
61 | (4) |
|
2.4 Components of a Practical Crossbar Switch Fabric System |
|
|
65 | (2) |
|
2.5 Traffic Scheduling in the Crossbar Switch |
|
|
67 | (8) |
|
2.5.1 The Scheduling Problem |
|
|
69 | (1) |
|
2.5.2 Parallel Iterative Matching (PIM) |
|
|
70 | (2) |
|
2.5.3 Round-Robin Matching (RRM) |
|
|
72 | (1) |
|
2.5.4 Iterative Round-Robin Matching with Slip (iSLIP) |
|
|
73 | (2) |
|
2.5.5 Other Considerations in the Design of Schedulers |
|
|
75 | (1) |
|
2.6 Handling Multicast Traffic |
|
|
75 | (11) |
|
2.6.1 Multicast Packet Replication |
|
|
77 | (2) |
|
2.6.2 Multicast Traffic Scheduling |
|
|
79 | (1) |
|
2.6.2.1 Full versus Partial Multicast Scheduling across the Crossbar Switch Fabric |
|
|
79 | (1) |
|
2.6.2.2 Scheduling in Internally Unbuffered Crossbar Switches |
|
|
80 | (2) |
|
2.6.2.3 Scheduling in Internally Buffered Crossbar Switches |
|
|
82 | (1) |
|
2.6.2.4 Special Focus: The ESLIP Scheduling Algorithm |
|
|
83 | (3) |
|
2.7 Data Transfer Process over the Switch Fabric |
|
|
86 | (1) |
|
2.8 System Monitoring and Control |
|
|
87 | (5) |
|
2.8.1 Main MBus Functions |
|
|
89 | (1) |
|
2.8.2 Alarm Functionality |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
95 | (4) |
|
2.11 Generic Switch/Router with Crossbar Switch Fabric |
|
|
99 | (10) |
|
|
104 | (5) |
|
Chapter 3 Introduction to Switch/Routers with Crossbar Switch Fabrics |
|
|
109 | (14) |
|
3.1 The Crossbar Switch Fabric |
|
|
109 | (1) |
|
3.2 Architectures with Crossbar-Based Switch Fabrics and Centralized Forwarding Engines |
|
|
110 | (2) |
|
3.2.1 Architectures with Forwarding Using a Flow/Route Cache in Centralized Processor |
|
|
110 | (1) |
|
3.2.2 Architectures with Forwarding Using an Optimized Lookup System in Centralized Processor |
|
|
111 | (1) |
|
3.3 Architectures with Crossbar-Based Switch Fabrics and Distributed Forwarding Engines |
|
|
112 | (4) |
|
3.3.1 Architectures with Forwarding Engine and Flow/Route Cache in Line Cards |
|
|
113 | (1) |
|
3.3.2 Architectures with Fully Distributed Forwarding Engines in Line Cards |
|
|
114 | (2) |
|
3.4 Relating Architectures to Switch/Router Types |
|
|
116 | (7) |
|
PART 2 Design Examples and Case Studies |
|
|
|
Chapter 4 Cisco Catalyst 6500 Series Switches with Supervisor Engines 1A and 2 |
|
|
123 | (34) |
|
|
123 | (1) |
|
4.2 Main Architectural Features of the Catalyst 6500 Series |
|
|
124 | (4) |
|
4.3 Catalyst 6500 Switch Fabric Architecture |
|
|
128 | (4) |
|
4.4 Catalyst 6500 Line Cards Architectures |
|
|
132 | (1) |
|
4.4.1 Fabric-Enabled Line Cards |
|
|
132 | (1) |
|
4.4.2 Fabric-Only Line Cards |
|
|
133 | (1) |
|
4.5 Catalyst 6500 Control Plane Implementation and Forwarding Engines---Supervisor Engines |
|
|
133 | (12) |
|
4.5.1 Supervisor Engine 1A Architecture |
|
|
133 | (1) |
|
4.5.1.1 Supervisor Engine 1A with Only a PFC1 |
|
|
133 | (2) |
|
4.5.1.2 Supervisor Engine 1A with a PFC1 and MSFC1/MSFC2 |
|
|
135 | (2) |
|
4.5.2 Supervisor Engine 2 Architecture |
|
|
137 | (1) |
|
4.5.2.1 Supervisor Engine 2 with a PFC2 |
|
|
137 | (3) |
|
4.5.2.2 Supervisor Engine 2 with a PFC 2 and MSFC2 |
|
|
140 | (1) |
|
4.5.3 Supporting High Availability with Dual Supervisor Engines |
|
|
141 | (1) |
|
4.5.4 Distributed Forwarding Card |
|
|
142 | (1) |
|
4.5.4.1 Packet Forwarding in the DFC |
|
|
143 | (2) |
|
4.6 Packet Flow in the Catalyst 6500 |
|
|
145 | (12) |
|
4.6.1 Packet Flow in the Catalyst 6500 with Centralized Forwarding |
|
|
145 | (3) |
|
4.6.2 Packet Flow in the Catalyst 6500 with Distributed Forwarding |
|
|
148 | (8) |
|
|
156 | (1) |
|
Chapter 5 Avaya P580 and P882 Routing Switch Architecture with 80-Series Media Module |
|
|
157 | (18) |
|
|
157 | (1) |
|
|
157 | (1) |
|
5.3 Data Flow through the Avaya 80-Series Switch |
|
|
158 | (3) |
|
5.4 Quality of Service (QoS) Mechanisms |
|
|
161 | (9) |
|
5.4.1 Classification Precedence |
|
|
161 | (2) |
|
5.4.2 DiffServ Mapping Table |
|
|
163 | (1) |
|
5.4.3 Queuing and Scheduling |
|
|
164 | (1) |
|
|
164 | (3) |
|
5.4.5 IEEE 802.1p/Q and DSCP or ToS Standards in the Avaya 80-Series |
|
|
167 | (1) |
|
5.4.5.1 Diff Serv's Per-Hop Behaviors (PHB) |
|
|
167 | (1) |
|
5.4.5.2 Packet Loss Priority (PLP) |
|
|
168 | (1) |
|
5.4.5.3 Avaya 80-Series Recommendations for IEEE 802.1p/Q, DSCP Code Point, and Queues |
|
|
169 | (1) |
|
5.5 Designing the High-Performance Switch/Router |
|
|
170 | (5) |
|
|
172 | (3) |
|
Chapter 6 Foundry Networks Multilayer Switches with IronCore" Network Interface Module |
|
|
175 | (18) |
|
|
175 | (1) |
|
6.2 Switch Chassis Overview |
|
|
175 | (2) |
|
6.3 Chassis Crossbar Switch Fabric |
|
|
177 | (2) |
|
6.4 IronCore" Network Interface Module Architecture |
|
|
179 | (8) |
|
6.4.1 Network Interface Module Components |
|
|
180 | (1) |
|
|
180 | (2) |
|
|
182 | (1) |
|
6.4.2 Packet Processor---The Forwarding Engine of IronCore |
|
|
182 | (1) |
|
6.4.3 Route Processor Components |
|
|
183 | (1) |
|
6.4.3.1 System Management Module/Board---The Route Processor Module |
|
|
183 | (1) |
|
6.4.3.2 System Management Interface/CPU |
|
|
183 | (1) |
|
6.4.3.3 CPU Path and Data Transfer Engine Path |
|
|
184 | (1) |
|
|
184 | (1) |
|
6.4.4 Shared Memory and Switch Fabric Interface Components |
|
|
184 | (1) |
|
6.4.4.1 Shared-Memory Switch Fabric and Buffer Pool |
|
|
184 | (1) |
|
6.4.4.2 Data Transfer Engine |
|
|
185 | (1) |
|
6.4.4.3 Crossbar Backplane Connection--- Module Connection to Crossbar Switch Fabric |
|
|
185 | (1) |
|
6.4.4.4 Multiple Destination Output Priority Queues |
|
|
185 | (1) |
|
6.4.4.5 Multiple Input Source Buffers per Output Port |
|
|
186 | (1) |
|
6.5 Biglron 4000 Complete Crossbar Switch System |
|
|
187 | (1) |
|
6.6 Packet Processing Overview |
|
|
188 | (3) |
|
6.6.1 Role of the Data Transfer Engine and Packet Flow for Unicast and Multicast Traffic |
|
|
189 | (1) |
|
6.6.1.1 Forwarding Unicast Traffic |
|
|
190 | (1) |
|
6.6.1.2 Forwarding Multicast Traffic |
|
|
190 | (1) |
|
6.7 Important Attributes of the Shared-Memory Based IronCore Architecture |
|
|
191 | (2) |
|
|
192 | (1) |
|
Chapter 7 Foundry Networks Multilayer Switches with JetCore" Network Interface Module |
|
|
193 | (26) |
|
|
193 | (1) |
|
7.2 JetCore" Network Interface Module Architecture |
|
|
193 | (14) |
|
7.2.1 Network Interface Components |
|
|
197 | (1) |
|
|
197 | (1) |
|
7.2.1.2 Media Access Controller (MAC) |
|
|
197 | (1) |
|
7.2.2 JetCore Forwarding Engine Components |
|
|
197 | (1) |
|
7.2.2.1 Packet Classifier---The Forwarding Engine of JetCore |
|
|
197 | (2) |
|
7.2.2.2 Content Addressable Memory (CAM) |
|
|
199 | (1) |
|
7.2.2.3 Parameter Random Access Memory (PRAM) |
|
|
200 | (1) |
|
7.2.2.4 VLAN Multicast Assist Module |
|
|
200 | (1) |
|
7.2.2.5 Transmit Pipeline |
|
|
201 | (1) |
|
7.2.3 Memory Components of the Port Group Switching Logic and Switch Fabric |
|
|
201 | (1) |
|
7.2.3.1 Shared-Memory Switch Fabric |
|
|
201 | (1) |
|
|
202 | (1) |
|
7.2.3.3 Shared-Memory Buffer Pool |
|
|
203 | (1) |
|
7.2.4 Route Processor Components |
|
|
203 | (1) |
|
|
203 | (1) |
|
7.2.4.2 System Management Interface |
|
|
203 | (1) |
|
7.2.5 Module Crossbar Switch Fabric |
|
|
204 | (1) |
|
7.2.5.1 Backplane Connectivity |
|
|
204 | (1) |
|
7.2.5.2 Replication of Multicast Packets |
|
|
204 | (1) |
|
7.2.6 Multiple Destination Output Priority Queues |
|
|
205 | (2) |
|
7.3 Other JetCore Features |
|
|
207 | (1) |
|
7.4 Packet Processing Overview |
|
|
208 | (3) |
|
7.4.1 Packet Flow for Unicast and Multicast Traffic |
|
|
208 | (1) |
|
7.4.1.1 Forwarding Unicast Traffic to Destination Port(s) on a Different Module Crossbar Switch Fabric |
|
|
209 | (1) |
|
7.4.1.2 Forwarding Multicast Traffic to Destination Port(s) on Different Module Crossbar Switch Fabric(s) |
|
|
209 | (2) |
|
7.5 Foundry IronWare" Software Architecture |
|
|
211 | (2) |
|
7.6 Switching and Routing Architecture |
|
|
213 | (6) |
|
7.6.1 Foundry Switching and Routing Architecture |
|
|
213 | (2) |
|
7.6.2 Packet Handling Mechanisms in the Multilayer Switch |
|
|
215 | (1) |
|
7.6.3 Fastlron Multilayer Switch Architecture |
|
|
216 | (1) |
|
7.6.4 Biglron, Netlron, and Turbolron Multilayer Switch Architecture |
|
|
217 | (1) |
|
|
218 | (1) |
|
Chapter 8 Cisco Catalyst 6500 Series Switches with Supervisor Engine 720 |
|
|
219 | (36) |
|
|
219 | (2) |
|
8.2 Cisco Catalyst 6500 Backplane |
|
|
221 | (1) |
|
8.3 Cisco Catalyst 6500 Crossbar Switch Fabric |
|
|
222 | (3) |
|
8.4 Supervisor Engine 720 |
|
|
225 | (4) |
|
8.4.1 Multilayer Switch Feature Card 3(MSFC3) |
|
|
228 | (1) |
|
8.4.2 Policy Feature Card 3 (PFC3) |
|
|
228 | (1) |
|
8.5 Supervisor Engine 720-3B |
|
|
229 | (1) |
|
8.5.1 Policy Feature Card 3B (PFC3B) |
|
|
230 | (1) |
|
8.6 Supervisor Engine 720-3BXL |
|
|
230 | (1) |
|
8.6.1 Policy Feature Card 3BXL (PFC3BXL) |
|
|
230 | (1) |
|
8.7 Packet Forwarding in Supervisor Engines 720, 720-3B, and 720-3BXL |
|
|
230 | (1) |
|
8.8 Catalyst 6500 Line Cards Supported by Supervisor Engine 720 |
|
|
231 | (7) |
|
8.8.1 dCEF256 Line Card Architecture |
|
|
232 | (2) |
|
8.8.2 CEF720 Line Card Architecture |
|
|
234 | (4) |
|
8.8.3 dCEF720 Line Card Architecture |
|
|
238 | (1) |
|
8.9 Functional Elements of Distributed Forwarding Card (DFC) and Policy Feature Card (PFC) |
|
|
238 | (6) |
|
|
242 | (1) |
|
8.9.2 Access Control Lists for QoS and Security Processing |
|
|
242 | (1) |
|
8.9.3 Distributed Forwarding Operations in Catalyst 6500 with PFC or DFC |
|
|
243 | (1) |
|
8.10 Packet Flow in the Catalyst 6500 with Supervisor Engine 720 |
|
|
244 | (11) |
|
8.10.1 Centralized Forwarding |
|
|
244 | (3) |
|
8.10.2 Distributed Forwarding |
|
|
247 | (3) |
|
8.10.3 Flow Cache-Based Packet Forwarding--- Accelerated Cisco Express Forwarding (aCEF) |
|
|
250 | (3) |
|
|
253 | (2) |
|
Chapter 9 Multicast Routing and Multicast Forwarding Information Base (MFIB) Architecture |
|
|
255 | (50) |
|
|
255 | (1) |
|
9.2 Benefits of the MFIB Architecture |
|
|
256 | (1) |
|
9.3 Protocol-Independent Multicast (PIM) |
|
|
257 | (1) |
|
9.4 Types of Multicast Table Entries |
|
|
258 | (1) |
|
9.4.1 Multicast Table Context |
|
|
259 | (1) |
|
9.5 Types of Multicast Tables |
|
|
259 | (21) |
|
|
260 | (1) |
|
9.5.2 Reverse-Path Forwarding (RPF) Table |
|
|
261 | (1) |
|
9.5.3 PIM Dense Mode (PIM-DM) Table Entries |
|
|
262 | (1) |
|
9.5.4 PIM Sparse Mode (PIM-SM) Table Entries |
|
|
263 | (1) |
|
9.5.4.1 Concept of Rendezvous Point |
|
|
264 | (1) |
|
9.5.4.2 PIM-SM Router Architecture |
|
|
265 | (1) |
|
9.5.4.3 Sending Multicast Data |
|
|
265 | (2) |
|
9.5.4.4 Receiving Multicast Data |
|
|
267 | (1) |
|
9.5.4.5 PIM Assert Mechanism |
|
|
268 | (1) |
|
9.5.4.6 Electing the PIM Forwarder---PIM Assert Winner |
|
|
269 | (1) |
|
9.5.5 PIM Sparse-Dense Mode |
|
|
270 | (1) |
|
|
271 | (2) |
|
9.5.5.2 Using PIM Sparse-Dense with Auto-RP |
|
|
273 | (1) |
|
9.5.6 Multicast Source Discovery Protocol (MSDP) Cache |
|
|
273 | (1) |
|
9.5.6.1 MSDP Peer-RPF Checks |
|
|
274 | (1) |
|
9.5.7 PIM Source Specific Multicast (PIM-SSM) Table Entries |
|
|
275 | (1) |
|
9.5.8 Bidirectional PIM (BIDIR-PIM) Table Entries |
|
|
276 | (2) |
|
9.5.8.1 Designated Forwarder Election |
|
|
278 | (1) |
|
9.5.8.2 Building the Bidirectional Group Tree and Packet Forwarding |
|
|
279 | (1) |
|
9.6 Multicast Reverse Path Forwarding (RPF) |
|
|
280 | (5) |
|
9.6.1 Using the RPF Table |
|
|
281 | (2) |
|
9.6.2 Data-Plane versus Control-Plane RPF Check |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (12) |
|
9.7.1 Protocols and Tables Used in IP Multicast Routing |
|
|
288 | (2) |
|
9.7.2 Layers 2 and 3 Multicast Tables Entries in a Switch/Router |
|
|
290 | (2) |
|
9.7.2.1 Benefits of IGMP Snooping |
|
|
292 | (1) |
|
9.7.3 Multicast Fast Drop |
|
|
292 | (1) |
|
9.7.4 Using the Multicast Routing Information Base (MRIB) |
|
|
293 | (1) |
|
9.7.5 Using the Multicast Forwarding Information Base (MFIB) |
|
|
294 | (1) |
|
9.7.6 Using the Distributed MFIB |
|
|
295 | (2) |
|
9.8 Multicast Packet Forwarding Using the MFIB |
|
|
297 | (4) |
|
|
297 | (2) |
|
9.8.2 Fast-Path Processing Using Flow/Route Caching |
|
|
299 | (1) |
|
9.8.3 Fast-Path Processing Using Optimized Forwarding Table Lookup Structures (without Flow/Route Caching) |
|
|
299 | (2) |
|
9.9 PIM-SM Tunnel Interfaces |
|
|
301 | (4) |
|
|
302 | (3) |
|
Chapter 10 Unicast versus Multicast Packet Forwarding: A Case Study |
|
|
305 | (38) |
|
|
305 | (1) |
|
10.2 Unicast Forwarding Table and TCAM Lookup Architecture |
|
|
305 | (3) |
|
10.3 Unicast Forwarding Examples |
|
|
308 | (11) |
|
10.3.1 Catalyst 6500 Supervisor Engine 2 |
|
|
309 | (1) |
|
10.3.2 Supervisor Engine 32 |
|
|
309 | (5) |
|
10.3.3 Catalyst 6500 Supervisor Engine 720 |
|
|
314 | (5) |
|
10.4 Multicast Forwarding Tables and TCAM Lookup Architecture |
|
|
319 | (1) |
|
10.5 Multicast Packet Replication |
|
|
319 | (7) |
|
10.5.1 Centralized Packet Replication |
|
|
323 | (1) |
|
10.5.2 Packet Replication in the Line Cards |
|
|
323 | (1) |
|
10.5.2.1 Ingress Multicast Packet Replication |
|
|
324 | (1) |
|
10.5.2.2 Egress Multicast Packet Replication |
|
|
324 | (1) |
|
10.5.3 Combined Replication Methods |
|
|
325 | (1) |
|
10.5.4 Packet Replication at Layer 3 versus Layer 2 |
|
|
325 | (1) |
|
10.5.5 Packet Replication in the Switch Fabric: Preferred Method |
|
|
326 | (1) |
|
10.6 Multicast Forwarding Architecture Example: Catalyst 6500 Supervisor Engine 720 |
|
|
326 | (17) |
|
10.6.1 Ingress Packet Replication Mode Example: Catalyst 6500 Supervisor Engine 720 |
|
|
333 | (2) |
|
10.6.2 Egress Packet Replication Mode Example: Catalyst 6500 Supervisor Engine 720 |
|
|
335 | (7) |
|
|
342 | (1) |
Index |
|
343 | |