|
|
xvii | |
|
|
xxi | |
Preface |
|
xxvii | |
Abbreviations and Acronyms |
|
xxxi | |
|
|
xxxiii | |
|
1 Introduction to Ridge Regression |
|
|
1 | (14) |
|
|
1 | (4) |
|
1.1.1 Multicollinearity Problem |
|
|
3 | (2) |
|
1.2 Ridge Regression Estimator: Ridge Notion |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.4 Estimation of Ridge Parameter |
|
|
7 | (1) |
|
1.5 Preliminary Test and Stein-Type Ridge Estimators |
|
|
8 | (1) |
|
1.6 High-Dimensional Setting |
|
|
9 | (2) |
|
|
11 | (1) |
|
1.8 Organization of the Book |
|
|
12 | (3) |
|
2 Location and Simple Linear Models |
|
|
15 | (28) |
|
|
15 | (1) |
|
|
16 | (10) |
|
2.2.1 Location Model: Estimation |
|
|
16 | (1) |
|
2.2.2 Shrinkage Estimation of Location |
|
|
17 | (1) |
|
2.2.3 Ridge Regression-Type Estimation of Location Parameter |
|
|
18 | (1) |
|
2.2.4 LASSO for Location Parameter |
|
|
18 | (1) |
|
2.2.5 Bias and MSE Expression for the LASSO of Location Parameter |
|
|
19 | (4) |
|
2.2.6 Preliminary Test Estimator, Bias, and MSE |
|
|
23 | (1) |
|
2.2.7 Stein-Type Estimation of Location Parameter |
|
|
24 | (1) |
|
2.2.8 Comparison of LSE, PTE, Ridge, SE, and LASSO |
|
|
24 | (2) |
|
|
26 | (13) |
|
2.3.1 Estimation of the Intercept and Slope Parameters |
|
|
26 | (1) |
|
2.3.2 Test for Slope Parameter |
|
|
27 | (1) |
|
2.3.3 PTE of the Intercept and Slope Parameters |
|
|
27 | (2) |
|
2.3.4 Comparison of Bias and MSE Functions |
|
|
29 | (2) |
|
|
31 | (2) |
|
2.3.6 Optimum Level of Significance of Preliminary Test |
|
|
33 | (1) |
|
2.3.7 Ridge-Type Estimation of Intercept and Slope |
|
|
34 | (1) |
|
2.3.7.1 Bias and MSE Expressions |
|
|
35 | (1) |
|
2.3.8 LASSO Estimation of Intercept and Slope |
|
|
36 | (3) |
|
2.4 Summary and Concluding Remarks |
|
|
39 | (4) |
|
|
43 | (36) |
|
|
43 | (1) |
|
3.2 Model, Estimation, and Tests |
|
|
44 | (4) |
|
3.2.1 Estimation of Treatment Effects |
|
|
45 | (1) |
|
3.2.2 Test of Significance |
|
|
45 | (1) |
|
|
46 | (1) |
|
3.2.4 Preliminary Test and Stein-Type Estimators |
|
|
47 | (1) |
|
3.3 Bias and Weighted L2 Risks of Estimators |
|
|
48 | (4) |
|
3.3.1 Hard Threshold Estimator (Subset Selection Rule) |
|
|
48 | (1) |
|
|
49 | (2) |
|
3.3.3 Ridge Regression Estimator |
|
|
51 | (1) |
|
3.4 Comparison of Estimators |
|
|
52 | (8) |
|
3.4.1 Comparison of LSE with RLSE |
|
|
52 | (1) |
|
3.4.2 Comparison of LSE with PTE |
|
|
52 | (1) |
|
3.4.3 Comparison of LSE with SE and PRSE |
|
|
53 | (1) |
|
3.4.4 Comparison of LSE and RLSE with RRE |
|
|
54 | (2) |
|
3.4.5 Comparison of RRE with PTE, SE, and PRSE |
|
|
56 | (1) |
|
3.4.5.1 Comparison Between θˆRRn(kopt) and θˆPTn(α) |
|
|
56 | (1) |
|
3.4.5.2 Comparison Between θˆRRn(kopt) and θˆSn |
|
|
56 | (1) |
|
3.4.5.3 Comparison of θˆRRn(kopt) witn θˆS+n |
|
|
57 | (1) |
|
3.4.6 Comparison of LASSO with LSE and RLSE |
|
|
58 | (1) |
|
3.4.7 Comparison of LASSO with PTE, SE, and PRSE |
|
|
59 | (1) |
|
3.4.8 Comparison of LASSO with RRE |
|
|
60 | (1) |
|
|
60 | (3) |
|
3.6 Efficiency in Terms of Unweighted L2 Risk |
|
|
63 | (9) |
|
3.7 Summary and Concluding Remarks |
|
|
72 | (2) |
|
|
74 | (5) |
|
4 Seemingly Unrelated Simple Linear Models |
|
|
79 | (30) |
|
4.1 Model, Estimation, and Test of Hypothesis |
|
|
79 | (3) |
|
|
80 | (1) |
|
4.1.2 Penalty Estimation of β and θ |
|
|
80 | (1) |
|
4.1.3 PTE and Stein-Type Estimators of β and θ |
|
|
81 | (1) |
|
4.2 Bias and MSE Expressions of the Estimators |
|
|
82 | (4) |
|
4.3 Comparison of Estimators |
|
|
86 | (7) |
|
4.3.1 Comparison of LSE with RLSE |
|
|
86 | (1) |
|
4.3.2 Comparison of LSE with PTE |
|
|
86 | (1) |
|
4.3.3 Comparison of LSE with SE and PRSE |
|
|
87 | (1) |
|
4.3.4 Comparison of LSE and RLSE with RRE |
|
|
87 | (2) |
|
4.3.5 Comparison of RRE with PTE, SE, and PRSE |
|
|
89 | (1) |
|
4.3.5.1 Comparison Between θˆRRn(kopt) and θˆPTn |
|
|
89 | (1) |
|
4.3.5.2 Comparison Between θˆRRn(kopt) and θˆSn |
|
|
89 | (1) |
|
4.3.5.3 Comparison of θˆRRn(kopt) with θˆS+n |
|
|
90 | (1) |
|
4.3.6 Comparison of LASSO with RRE |
|
|
90 | (2) |
|
4.3.7 Comparison of LASSO with LSE and RLSE |
|
|
92 | (1) |
|
4.3.8 Comparison of LASSO with PTE, SE, and PRSE |
|
|
92 | (1) |
|
4.4 Efficiency in Terms of Unweighted L2 Risk |
|
|
93 | (3) |
|
|
94 | (1) |
|
|
95 | (1) |
|
4.5 Summary and Concluding Remarks |
|
|
96 | (13) |
|
5 Multiple Linear Regression Models |
|
|
109 | (10) |
|
|
109 | (1) |
|
5.2 Linear Model and the Estimators |
|
|
110 | (4) |
|
|
111 | (2) |
|
5.2.2 Shrinkage Estimators |
|
|
113 | (1) |
|
5.3 Bias and Weighted L2 Risks of Estimators |
|
|
114 | (5) |
|
5.3.1 Hard Threshold Estimator |
|
|
114 | (2) |
|
|
116 | (1) |
|
5.3.3 Multivariate Normal Decision Theory and Oracles for Diagonal Linear Projection |
|
|
117 | (2) |
|
53 A Ridge Regression Estimator |
|
|
119 | (24) |
|
5.3.5 Shrinkage Estimators |
|
|
119 | (1) |
|
5.4 Comparison of Estimators |
|
|
120 | (7) |
|
5.4.1 Comparison of LSE with RLSE |
|
|
120 | (1) |
|
5.4.2 Comparison of LSE with PTE |
|
|
121 | (1) |
|
5.4.3 Comparison of LSE with SE and PRSE |
|
|
121 | (1) |
|
5.4.4 Comparison of LSE and RLSE with RRE |
|
|
122 | (1) |
|
5.4.5 Comparison of RRE with PTE, SE, and PRSE |
|
|
123 | (1) |
|
5.4.5.1 Comparison Between θˆRRn(kopt) and θˆPTn (α) |
|
|
123 | (1) |
|
5.4.5.2 Comparison Between θˆRRn(kopt) and θˆSn |
|
|
124 | (1) |
|
5.4.5.3 Comparison of θˆRRn(kopt) with θˆSn |
|
|
124 | (1) |
|
5.4.6 Comparison of MLASSO with LSE and RLSE |
|
|
125 | (1) |
|
5.4.7 Comparison of MLASSO with PTE, SE, and PRSE |
|
|
126 | (1) |
|
5.4.8 Comparison of MLASSO with RRE |
|
|
127 | (1) |
|
5.5 Efficiency in Terms of Unweighted L2 Risk |
|
|
127 | (2) |
|
5.6 Summary and Concluding Remarks |
|
|
129 | (14) |
|
6 Ridge Regression in Theory and Applications |
|
|
143 | (28) |
|
6.1 Multiple Linear Model Specification |
|
|
143 | (3) |
|
6.1.1 Estimation of Regression Parameters |
|
|
143 | (2) |
|
6.1.2 Test of Hypothesis for the Coefficients Vector |
|
|
145 | (1) |
|
6.2 Ridge Regression Estimators (RREs) |
|
|
146 | (1) |
|
6.3 Bias, MSE, and Lj Risk of Ridge Regression Estimator |
|
|
147 | (4) |
|
6.4 Determination of the Tuning Parameters |
|
|
151 | (1) |
|
|
151 | (3) |
|
6.6 Degrees of Freedom of RRE |
|
|
154 | (1) |
|
6.7 Generalized Ridge Regression Estimators |
|
|
155 | (1) |
|
6.8 LASSO and Adaptive Ridge Regression Estimators |
|
|
156 | (2) |
|
6.9 Optimization Algorithm |
|
|
158 | (3) |
|
6.9.1 Prostate Cancer Data |
|
|
160 | (1) |
|
6.10 Estimation of Regression Parameters for Low-Dimensional Models |
|
|
161 | (7) |
|
6.10.1 BLUE and Ridge Regression Estimators |
|
|
161 | (1) |
|
6.10.2 Bias and L2 -risk Expressions of Estimators |
|
|
162 | (3) |
|
6.10.3 Comparison of the Estimators |
|
|
165 | (1) |
|
6.10.4 Asymptotic Results of RRE |
|
|
166 | (2) |
|
6.11 Summary and Concluding Remarks |
|
|
168 | (3) |
|
7 Partially Linear Regression Models |
|
|
171 | (26) |
|
|
171 | (1) |
|
7.2 Partial Linear Model and Estimation |
|
|
172 | (2) |
|
7.3 Ridge Estimators of Regression Parameter |
|
|
174 | (3) |
|
7.4 Biases and L2 Risks of Shrinkage Estimators |
|
|
177 | (1) |
|
|
178 | (10) |
|
7.5.1 Example: Housing Prices Data |
|
|
182 | (6) |
|
|
188 | (5) |
|
7.6.1 Example: Riboflavin Data |
|
|
192 | (1) |
|
7.7 Summary and Concluding Remarks |
|
|
193 | (4) |
|
8 Logistic Regression Model |
|
|
197 | (24) |
|
|
197 | (7) |
|
|
199 | (1) |
|
8.1.2 Shrinkage Estimators |
|
|
200 | (1) |
|
|
201 | (1) |
|
8.1.4 Results on PTE and Stein-Type Estimators |
|
|
202 | (2) |
|
8.1.5 Results on Penalty Estimators |
|
|
204 | (1) |
|
8.2 Asymptotic Distributional Lj Risk Efficiency Expressions of the Estimators |
|
|
204 | (9) |
|
|
205 | (1) |
|
|
206 | (1) |
|
8.2.3 Comparison of MLASSO vs. PTE |
|
|
206 | (1) |
|
|
207 | (1) |
|
8.2.5 Comparison of MLASSO vs. SE |
|
|
208 | (1) |
|
8.2.6 Comparison of MLASSO vs. PRSE |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (2) |
|
8.2.8 Comparison of RRE vs. PTE |
|
|
211 | (1) |
|
8.2.9 Comparison of RRE vs. SE |
|
|
211 | (1) |
|
8.2.10 Comparison of RRE vs. PRSE |
|
|
212 | (1) |
|
8.2.11 PTE vs. SE and PRSE |
|
|
212 | (1) |
|
8.2.12 Numerical Comparison Among the Estimators |
|
|
213 | (1) |
|
8.3 Summary and Concluding Remarks |
|
|
213 | (8) |
|
9 Regression Models with Autoregressive Errors |
|
|
221 | (30) |
|
|
221 | (9) |
|
|
223 | (1) |
|
9.1.2 Shrinkage Estimators |
|
|
224 | (1) |
|
9.1.2.1 Preliminary Test Estimator |
|
|
224 | (1) |
|
9.1.2.2 Stein-Type and Positive-Rule Stein-Type Estimators |
|
|
225 | (1) |
|
9.1.3 Results on Penalty Estimators |
|
|
225 | (1) |
|
9.1.4 Results on PTE and Stein-Type Estimators |
|
|
226 | (3) |
|
9.1.5 Results on Penalty Estimators |
|
|
229 | (1) |
|
9.2 Asymptotic Distributional L2-risk Efficiency Comparison |
|
|
230 | (2) |
|
9.2.1 Comparison of GLSE with RGLSE |
|
|
230 | (1) |
|
9.2.2 Comparison of GLSE with PTE |
|
|
231 | (1) |
|
9.2.3 Comparison of LSE with SE and PRSE |
|
|
231 | (1) |
|
9.2 A Comparison of LSE and RLSE with RRE |
|
|
232 | (5) |
|
9.2.5 Comparison of RRE with PTE, SE and PRSE |
|
|
233 | (1) |
|
9.2.5.1 Comparison Between βˆGRRn (kopt) and βˆG(PT)n |
|
|
233 | (1) |
|
9.2.5.2 Comparison Between βˆGRRn (kopt) and βˆG(S)n |
|
|
234 | (1) |
|
9.2.5.3 Comparison of βˆGRRn (kopt) and βˆG(S+)n |
|
|
234 | (1) |
|
9.2.6 Comparison of MLASSO with GLSE and RGLSE |
|
|
235 | (1) |
|
9.2.7 Comparison of MLASSO with PTE, SE, and PRSE |
|
|
236 | (1) |
|
9.2.8 Comparison of MLASSO with RRE |
|
|
236 | (1) |
|
9.3 Example: Sea Level Rise at Key West, Florida |
|
|
237 | (8) |
|
9.3.1 Estimation of the Model Parameters |
|
|
237 | (1) |
|
9.3.1.1 Testing for Multicollinearity |
|
|
237 | (1) |
|
9.3.1.2 Testing for Autoregressive Process |
|
|
238 | (1) |
|
9.3.1.3 Estimation of Ridge Parameter k |
|
|
239 | (1) |
|
9.3.2 Relative Efficiency |
|
|
240 | (1) |
|
9.3.2.1 Relative Efficiency (REff) |
|
|
240 | (3) |
|
9.3.2.2 Effect of Autocorrelation Coefficient φ |
|
|
243 | (2) |
|
9.4 Summary and Concluding Remarks |
|
|
245 | (6) |
|
10 Rank-Based Shrinkage Estimation |
|
|
251 | (34) |
|
|
251 | (1) |
|
10.2 Linear Model and Rank Estimation |
|
|
252 | (7) |
|
10.2.1 Penalty R-Estimators |
|
|
256 | (2) |
|
10.2.2 PTREs and Stein-type R-Estimators |
|
|
258 | (1) |
|
10.3 Asymptotic Distributional Bias and L2 Risk of the R-Estimators |
|
|
259 | (3) |
|
10.3.1 Hard Threshold Estimators (Subset Selection) |
|
|
259 | (1) |
|
|
260 | (1) |
|
10.3.3 Multivariate Normal Decision Theory and Oracles for Diagonal Linear Projection |
|
|
261 | (1) |
|
10.4 Comparison of Estimators |
|
|
262 | (6) |
|
10.4.1 Comparison of RE with Restricted RE |
|
|
262 | (1) |
|
10.4.2 Comparison of RE with PTRE |
|
|
263 | (1) |
|
10.4.3 Comparison of RE with SRE and PRSRE |
|
|
263 | (2) |
|
10.4.4 Comparison of RE and Restricted RE with RRRE |
|
|
265 | (1) |
|
10.4.5 Comparison of RRRE with PTRE, SRE, and PRSRE |
|
|
266 | (1) |
|
10.4.6 Comparison of RLASSO with RE and Restricted RE |
|
|
267 | (1) |
|
10.4.7 Comparison of RLASSO with PTRE, SRE, and PRSRE |
|
|
267 | (1) |
|
10.4.8 Comparison of Modified RLASSO with RRRE |
|
|
268 | (1) |
|
10.5 Summary and Concluding Remarks |
|
|
268 | (17) |
|
11 High-Dimensional Ridge Regression |
|
|
285 | (18) |
|
11.1 High-Dimensional RRE |
|
|
286 | (2) |
|
11.2 High-Dimensional Stein-Type RRE |
|
|
288 | (5) |
|
|
291 | (1) |
|
11.2.1.1 Example: Riboflavin Data |
|
|
291 | (1) |
|
11.2.1.2 Monte Carlo Simulation |
|
|
291 | (2) |
|
11.3 Post Selection Shrinkage |
|
|
293 | (7) |
|
11.3.1 Notation and Assumptions |
|
|
296 | (1) |
|
11.3.2 Estimation Strategy |
|
|
297 | (2) |
|
11.3.3 Asymptotic Distributional L2-Risks |
|
|
299 | (1) |
|
11.4 Summary and Concluding Remarks |
|
|
300 | (3) |
|
12 Applications: Neural Networks and Big Data |
|
|
303 | (17) |
|
|
304 | (3) |
|
12.2 A Simple Two-Layer Neural Network |
|
|
307 | (6) |
|
12.2.1 Logistic Regression Revisited |
|
|
307 | (3) |
|
12.2.2 Logistic Regression Loss Function with Penalty |
|
|
310 | (1) |
|
12.2.3 Two-Layer Logistic Regression |
|
|
311 | (2) |
|
12.3 Deep Neural Networks |
|
|
313 | (2) |
|
12.4 Application: Image Recognition |
|
|
315 | (5) |
|
|
315 | (1) |
|
12.4.2 Binary Classification |
|
|
316 | (2) |
|
|
318 | (2) |
|
12 A A Experimental Results |
|
|
320 | (5) |
|
12.5 Summary and Concluding Remarks |
|
|
323 | (2) |
References |
|
325 | (8) |
Index |
|
333 | |