Preface |
|
xi | |
About the Author |
|
xv | |
|
Chapter 1 Structural Aspects of Skutterudites |
|
|
1 | (64) |
|
|
1 | (16) |
|
1.1.1 Structural Aspects of Binary Skutterudites |
|
|
1 | (6) |
|
1.1.2 Bonding in Binary Skutterudites |
|
|
7 | (1) |
|
1.1.3 Solid Solutions of Binary Skutterudites |
|
|
8 | (1) |
|
1.1.4 Structural Stability of Binary Skutterudites |
|
|
9 | (3) |
|
1.1.5 Native Defects in Binary Skutterudites |
|
|
12 | (5) |
|
1.2 Ternary Skutterudites |
|
|
17 | (2) |
|
|
19 | (29) |
|
1.3.1 Filled Skutterudites with the [ M4X12] Framework |
|
|
22 | (1) |
|
|
22 | (4) |
|
1.3.1.2 Criteria for Filling |
|
|
26 | (2) |
|
1.3.1.3 Column 13 Elements (Ga, In, and Tl) as Fillers |
|
|
28 | (6) |
|
1.3.1.4 Skutterudites as Zintl Phases |
|
|
34 | (1) |
|
1.3.1.5 Atomic Displacement Parameter |
|
|
34 | (2) |
|
1.3.2 Filled Skutterudites with the [ T4X12]4-Framework |
|
|
36 | (1) |
|
1.3.2.1 [ T4X12]4-Polyanion and Valency of the Fillers |
|
|
36 | (7) |
|
1.3.3 Skutterudites with the [ Pt4Ge12] Framework |
|
|
43 | (2) |
|
1.3.4 Skutterudites Filled with Electronegative Fillers |
|
|
45 | (3) |
|
1.4 Composite Skutterudites |
|
|
48 | (17) |
|
1.4.1 Intrinsically Formed Composite Skutterudites |
|
|
48 | (4) |
|
1.4.2 Extrinsically Formed Composite Skutterudites |
|
|
52 | (7) |
|
|
59 | (6) |
|
Chapter 2 Fabrication of Skutterudites |
|
|
65 | (26) |
|
2.1 Phase Diagram of Skutterudites |
|
|
65 | (2) |
|
2.2 Synthesis of Skutterudites |
|
|
67 | (24) |
|
2.2.1 Synthesis by Melting and Annealing |
|
|
67 | (1) |
|
2.2.2 Solid-Liquid Sintering |
|
|
67 | (1) |
|
2.2.3 Mn-Reduction of Oxides |
|
|
67 | (1) |
|
2.2.4 Single Crystal Growth |
|
|
67 | (1) |
|
2.2.4.1 Single Crystals from Nonstoichometric Melts |
|
|
67 | (1) |
|
2.2.4.2 Flux Growth of Crystals |
|
|
68 | (1) |
|
2.2.4.3 Growth of Crystals by Chemical Vapor Transport |
|
|
69 | (1) |
|
2.2.5 Rapid Fabrication Techniques |
|
|
69 | (1) |
|
2.2.5.1 Melt Spinning Technique |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
2.2.5.4 Chemical Alloying |
|
|
70 | (1) |
|
2.2.6 High-Pressure Synthesis |
|
|
70 | (1) |
|
2.2.7 Microwave-Assisted Synthesis |
|
|
71 | (1) |
|
2.2.8 Self-Propagating High-Temperature Synthesis (SHS) |
|
|
71 | (1) |
|
2.2.9 Selective Laser Melting |
|
|
72 | (1) |
|
2.2.10 Hydrothermal and Solvothermal Growth |
|
|
72 | (2) |
|
2.2.11 Growth of Thin Films of Skutterudites |
|
|
74 | (1) |
|
2.2.11.1 MBE Fabrication of Skutterudite Films |
|
|
75 | (1) |
|
2.2.11.2 Modulated Elemental Reaction Synthesis of Skutterudite Films |
|
|
76 | (2) |
|
2.2.11.3 DC and RF Sputtering of Skutterudite Films |
|
|
78 | (3) |
|
2.2.11.4 Pulsed Laser Deposition of Skutterudite Films |
|
|
81 | (2) |
|
2.2.11.5 Electrodeposition of Skutterudite Films |
|
|
83 | (3) |
|
2.2.12 Stability of Thin Films of CoSb3 |
|
|
86 | (1) |
|
|
86 | (5) |
|
Chapter 3 Electronic Energy Band Structure |
|
|
91 | (38) |
|
3.1 Band Structure of Binary Skutterudites |
|
|
91 | (19) |
|
3.1.1 Effect of Pressure on the Band Structure of Binary Skutterudites |
|
|
108 | (2) |
|
3.2 Band Structure of Ternary Skutterudites |
|
|
110 | (3) |
|
3.3 Band Structure of Filled Skutterudites |
|
|
113 | (5) |
|
3.4 Band Structure of Skutterudites with the [ Pt4Ge12] Framework |
|
|
118 | (3) |
|
3.5 Band Structure of Skutterudites Filled with Electronegative Fillers |
|
|
121 | (2) |
|
3.6 Benefits of Accurate Computations of Electronic Bands |
|
|
123 | (6) |
|
|
124 | (5) |
|
Chapter 4 Electronic Transport Properties of Skutterudites |
|
|
129 | (40) |
|
|
129 | (2) |
|
4.2 Conduction in a Single Parabolic Band |
|
|
131 | (2) |
|
4.3 Two-Band Conduction, Bipolar Thermal Conductivity |
|
|
133 | (1) |
|
4.4 The Role of Effective Mass |
|
|
134 | (2) |
|
|
136 | (1) |
|
4.6 Relaxation Time/Scattering Mechanisms of Charge Carriers |
|
|
136 | (8) |
|
4.6.1 Scattering of Charge Carriers by Phonons |
|
|
137 | (1) |
|
4.6.1.1 Acoustic Deformation Potential Scattering |
|
|
137 | (2) |
|
4.6.1.2 Polar Optical Scattering |
|
|
139 | (1) |
|
4.6.1.3 Nonpolar Optical Scattering |
|
|
140 | (1) |
|
4.6.2 Ionized Impurity Scattering |
|
|
140 | (2) |
|
|
142 | (1) |
|
4.6.4 Intervalley Scattering |
|
|
142 | (1) |
|
4.6.5 Averaging and the Combined Relaxation Time |
|
|
143 | (1) |
|
4.7 Forms of the Charge Carrier Mobility |
|
|
144 | (1) |
|
4.7.1 Mobility of Electrons under Acoustic Deformation Potential Scattering |
|
|
144 | (1) |
|
4.7.2 Mobility of Electrons under Ionized Impurity Scattering |
|
|
145 | (1) |
|
4.8 Electronic Transport Properties of Skutterudites |
|
|
145 | (24) |
|
4.8.1 Electrical Conductivity of Skutterudites |
|
|
145 | (1) |
|
4.8.1.1 Pure Binary Skutterudites |
|
|
145 | (4) |
|
4.8.1.2 Intentionally Doped Binary Skutterudites |
|
|
149 | (1) |
|
4.8.1.3 Electrical Conductivity of Ternary Skutterudites |
|
|
150 | (1) |
|
4.8.1.4 Electrical Conductivity of Filled Skutterudites |
|
|
150 | (1) |
|
4.8.2 Seebeck Coefficient of Skutterudites |
|
|
151 | (1) |
|
4.8.2.1 Seebeck Coefficient of Pure CoSb3 |
|
|
151 | (3) |
|
4.8.2.2 Seebeck Coefficient of Doped CoSb3 |
|
|
154 | (1) |
|
4.8.2.3 Seebeck Coefficient of Other Binary Skutterudites |
|
|
155 | (2) |
|
4.8.2.4 Seebeck Coefficient of Composites Having the CoSb3 Matrix |
|
|
157 | (2) |
|
4.8.2.5 Effect of Pressure on the Seebeck Coefficient |
|
|
159 | (1) |
|
4.8.2.6 Seebeck Coefficient as Input to Determine the Carrier Effective Mass |
|
|
159 | (2) |
|
4.8.2.7 Seebek Coefficient of Filled Skutterudites |
|
|
161 | (3) |
|
|
164 | (5) |
|
Chapter 5 Thermal Transport Properties of Skutterudites |
|
|
169 | (92) |
|
|
169 | (8) |
|
5.1.1 Normal Modes of a Monatomic Linear Chain |
|
|
170 | (3) |
|
5.1.2 Normal Modes of a Diatomic Linear Chain |
|
|
173 | (4) |
|
5.2 Lattice Modes and the Phonon Density of States in Skutterudites |
|
|
177 | (14) |
|
5.2.1 Lattice Modes in Binary Skutterudites |
|
|
177 | (4) |
|
5.2.2 Lattice Modes in Ternary Skutterudites |
|
|
181 | (1) |
|
5.2.3 Lattice Modes and the Density of States of Filled Skutterudites |
|
|
181 | (10) |
|
5.3 Challenges to the PGEC Concept in Skutterudites |
|
|
191 | (1) |
|
5.4 Goldstone Modes in Certain Skutterudites |
|
|
192 | (1) |
|
5.5 Lattice Dynamics in FeSb3 |
|
|
193 | (1) |
|
5.6 Phonon Dispersion in Yb-Filled Skutterudites |
|
|
194 | (3) |
|
5.7 Theoretical Foundations of the Thermal Conductivity |
|
|
197 | (6) |
|
5.7.1 Electronic Part of the Thermal Conductivity |
|
|
199 | (1) |
|
5.7.2 Lattice Thermal Conductivity |
|
|
200 | (1) |
|
5.7.2.1 Boltzmann Transport Equation for Heat |
|
|
200 | (3) |
|
5.8 Scattering Processes of Phonons |
|
|
203 | (10) |
|
5.8.1 Intrinsic Phonon Scattering Processes |
|
|
203 | (2) |
|
5.8.1.1 Model of Callaway |
|
|
205 | (1) |
|
5.8.1.2 Temperature and Frequency Dependence of Intrinsic Phonon Processes |
|
|
206 | (2) |
|
5.8.2 Temperature and Frequency Dependence of Extrinsic Phonon Processes |
|
|
208 | (1) |
|
5.8.2.1 Boundary Scattering |
|
|
208 | (1) |
|
5.8.2.2 Scattering of Phonons by Dislocations |
|
|
208 | (1) |
|
5.8.2.3 Scattering of Phonons by Point Defects |
|
|
209 | (2) |
|
5.8.2.4 Scattering of Phonons by Charge Carriers |
|
|
211 | (1) |
|
5.8.2.5 Resonant Scattering of Phonons |
|
|
212 | (1) |
|
5.9 Molecular Dynamics Simulations of Thermal Conductivity |
|
|
213 | (2) |
|
5.10 Ab initio Calculations of the Thermal Conductivity |
|
|
215 | (2) |
|
5.11 Bipolar Heat Transport |
|
|
217 | (1) |
|
5.12 Minimum Thermal Conductivity |
|
|
217 | (3) |
|
5.13 Thermal Conductivity of Skutterudites |
|
|
220 | (41) |
|
5.13.1 Thermal Conductivity of Binary Skutterudites |
|
|
220 | (5) |
|
5.13.1.1 Effect of Grain Size on the Thermal Conductivity of Binary Skutterudites |
|
|
225 | (1) |
|
5.13.1.2 Effect of Doping on the Thermal Conductivity of Binary Skutterudites |
|
|
226 | (3) |
|
5.13.1.3 Thermal Conductivity of Solid Solutions of Binary Skutterudites |
|
|
229 | (1) |
|
5.13.1.4 Thermal Conductivity of Composite Structures Based on Binary Skutterudites |
|
|
230 | (1) |
|
5.13.2 Thermal Conductivity of Ternary Skutterudites |
|
|
231 | (2) |
|
5.13.3 Thermal Conductivity of Filled Skutterudites |
|
|
233 | (3) |
|
5.13.3.1 Thermal Conductivity of Single-Filled RyCo4Sb12 and RFe4Sb12 |
|
|
236 | (1) |
|
5.13.3.2 Thermal Conductivity of Yb-Filled Frameworks [ Co4Sb12] and [ Fe4Sb12] |
|
|
237 | (5) |
|
5.13.3.3 Thermal Conductivity of In-Filled Frameworks [ Co4Sb12] and [ Fe4Sb12] |
|
|
242 | (1) |
|
5.13.3.4 Thermal Conductivity of Single-Filled Charge Compensated Skutterudites |
|
|
243 | (4) |
|
5.13.3.5 Thermal Conductivity of Composite Skutterudites with a Filled Matrix |
|
|
247 | (1) |
|
5.13.3.6 Thermal Conductivity of Multiple-Filled Skutterudites |
|
|
248 | (4) |
|
|
252 | (9) |
|
Chapter 6 Thermoelectric Properties of Skutterudites |
|
|
261 | (58) |
|
|
261 | (1) |
|
6.2 Thermoelectric Phenomena |
|
|
261 | (3) |
|
6.3 Operation of a Thermoelectric Energy Converter |
|
|
264 | (7) |
|
6.3.1 Thermoelectric Generator Operating with the Maximum Power |
|
|
266 | (1) |
|
6.3.2 Thermoelectric Generator Operating with the Maximum Efficiency |
|
|
267 | (4) |
|
6.4 Optimization of the Thermoelectric Figure of Merit |
|
|
271 | (14) |
|
6.4.1 Optimal Value of the Seebeck Coefficient That Maximizes ZT |
|
|
273 | (2) |
|
6.4.2 The Chasmar-Stratton Material Parameter β |
|
|
275 | (5) |
|
6.4.3 Band Engineering to Enhance Thermoelectric Performance |
|
|
280 | (1) |
|
6.4.3.1 Multivalley Semiconductors |
|
|
280 | (1) |
|
|
280 | (2) |
|
|
282 | (2) |
|
|
284 | (1) |
|
6.5 Thermoelectric Skutterudites |
|
|
285 | (10) |
|
6.5.1 Thermoelectric Performance of n-Type Skutterudites |
|
|
286 | (5) |
|
6.5.2 Thermoelectric Performance of p-Type Skutterudites |
|
|
291 | (4) |
|
6.6 Stability of Skutterudites |
|
|
295 | (6) |
|
6.6.1 Compositional Stability |
|
|
295 | (3) |
|
6.6.2 Mechanical Integrity of Skutterudites |
|
|
298 | (3) |
|
6.6.3 Thermal Expansion of Skutterudites |
|
|
301 | (1) |
|
6.7 Skutterudite Thermoelectric Modules |
|
|
301 | (11) |
|
6.8 Applications of Skutterudite Modules |
|
|
312 | (7) |
|
|
313 | (6) |
Index |
|
319 | |