Muutke küpsiste eelistusi

E-raamat: Ultrasound Elastography for Biomedical Applications and Medicine: Biomedical Applications and Medicine [Wiley Online]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Wiley Online
  • Hind: 169,17 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
Ultrasound Elastography for Biomedical Applications and Medicine

Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA

Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin Ondes et Images, ESPCI ParisTech CNRS, France

Covers all major developments and techniques of Ultrasound Elastography and biomedical applications

The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues.

Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography.

Key features:





Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available.

The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.
List of Contributors xix
Section I Introduction 1(6)
1 Editors' Introduction
3(4)
Ivan Nenadic
Matthew Urban
James Greenleaf Jean-Luc Gennisson
Miguel Bernal
Mickael Tanter
References
5(2)
Section II Fundamentals of Ultrasound Elastography 7(64)
2 Theory of Ultrasound Physics and Imaging
9(20)
Roberto Lavarello
Michael L. Oelze
2.1 Introduction
9(1)
2.2 Modeling the Response of the Source to Stimuli [ h(t)]
10(2)
2.3 Modeling the Fields from Sources [ p(t, x)]
12(3)
2.4 Modeling an Ultrasonic Scattered Field [ s(t, x)]
15(4)
2.5 Modeling the Bulk Properties of the Medium [ a(t, x)]
19(2)
2.6 Processing Approaches Derived from the Physics of Ultrasound [ U]
21(5)
2.7 Conclusions
26(1)
References
27(2)
3 Elastography and the Continuum of Tissue Response
29(6)
Kevin J. Parker
3.1 Introduction
29(2)
3.2 Some Classical Solutions
31(1)
3.3 The Continuum Approach
32(1)
3.4 Conclusion
33(1)
Acknowledgments
33(1)
References
34(1)
4 Ultrasonic Methods for Assessment of Tissue Motion in Elastography
35(36)
Jingfeng Jiang
Bo Peng
4.1 Introduction
35(1)
4.2 Basic Concepts and their Relevance in Tissue Motion Tracking
36(1)
4.2.1 Ultrasound Signal Processing
36(1)
4.2.2 Constitutive Modeling of Soft Tissues
37(1)
4.3 Tracking Tissue Motion through Frequency-domain Methods
37(2)
4.4 Maximum Likelihood (ML) Time-domain Correlation-based Methods
39(5)
4.5 Tracking Tissue Motion through Combining Time-domain and Frequency-domain Information
44(1)
4.6 Time-domain Maximum A Posterior (MAP) Speckle Tracking Methods
45(8)
4.6.1 Tracking Large Tissue Motion
45(2)
4.6.2 Strategies for Accurately Tracking Large Tissue Motion
47(1)
4.6.2.1 Maximize Prior Information
48(1)
4.6.2.2 Regularized Motion Tracking Using Smoothness Constraint(s)
50(1)
4.6.2.3 Bayesian Speckle Tracking
50(2)
4.6.3 Discussions
52(1)
4.7 Optical Flow-based Tissue Motion Tracking
53(2)
4.7.1 Region-based Optical Flow Methods
53(2)
4.7.2 Optical Flow Methods with Smoothness Constraints
55(1)
4.8 Deformable Mesh-based Motion-tracking Methods
55(2)
4.9 Future Outlook
57(4)
4.9.1 Tracking Lateral Tissue Motion
57(2)
4.9.2 Tracking Large Tissue Motion
59(2)
4.9.3 Testing of Motion-tracking Algorithms
61(1)
4.9.3.1 Evaluation of Performance
61(1)
4.9.3.2 Testing Data
62(1)
4.9.4 Future with Volumetric Ultrasound Data
63(1)
4.10 Conclusions
63(1)
Acknowledgments
63(1)
Acronyms
63(1)
Additional Nomenclature of Definitions and Acronyms
64(1)
References
65(6)
Section III Theory of Mechanical Properties of Tissue 71(58)
5 Continuum Mechanics Tensor Calculus and Solutions to Wave Equations
73(9)
Luiz Vasconcelos
Jean-Luc Gennisson
Ivan Nenadic
5.1 Introduction
73(1)
5.2 Mathematical Basis and Notation
73(2)
5.2.1 Tensor Notation
73(1)
5.2.2 Vector Operators
74(1)
5.2.3 Important Tensors and Notations
75(1)
5.3 Solutions to Wave Equations
75(6)
5.3.1 Displacement and Deformation
75(1)
5.3.2 The Stress Tensor
75(1)
5.3.3 Stress-Strain Relation
76(1)
5.3.4 Displacement Equation of Motion
77(1)
5.3.5 Helmholtz Decomposition
77(1)
5.3.6 Compressional and Shear Waves
78(3)
References
81(1)
6 Transverse Wave Propagation in Anisotropic Media
82(8)
Jean-Luc Gennisson
6.1 Introduction
82(1)
6.2 Theoretical Considerations from General to Transverse Isotropic Models for Soft Tissues
82(5)
6.3 Experimental Assessment of Anisotropic Ratio by Shear Wave Elastography
87(1)
6.3.1 Transient Elastography
87(1)
6.3.2 Supersonic Shear Imaging
87(1)
6.4 Conclusion
88(1)
References
88(2)
7 Transverse Wave Propagation in Bounded Media
90(15)
Javier Brum
7.1 Introduction
90(1)
7.2 Transverse Wave Propagation in Isotropic Elastic Plates
90(3)
7.2.1 Field Equations for Plane Waves in Two Dimensions
91(1)
7.2.2 The Partial Wave Technique in Isotropic Plates
92(1)
7.3 Plate in Vacuum: Lamb Waves
93(3)
7.3.1 Low Frequency Approximation for Modes with Cut-off Frequency
95(1)
7.3.2 Modes Without Cut-off Frequencies
96(1)
7.4 Viscoelastic Plate in Liquid: Leaky Lamb Waves
96(3)
7.4.1 Elastic Plate in Liquid
96(1)
7.4.1.1 Leakage into the Fluid
98(1)
7.4.2 Viscoelastic Plate
98(1)
7.4.3 Empirical Formula
99(1)
7.5 Isotropic Plate Embedded Between Two Semi-infinite Elastic Solids
99(1)
7.6 Transverse Wave Propagation in Anisotropic Viscoelastic Plates Surrounded by Non-viscous Fluid
100(3)
7.6.1 Guided Wave Propagation Parallel to the Fibers
101(1)
7.6.2 Guided Wave Propagation Perpendicular to the Fibers
102(1)
7.7 Conclusions
103(1)
Acknowledgments
103(1)
References
103(2)
8 Rheological Model-based Methods for Estimating Tissue Viscoelasticity
105(13)
Jean-Luc Gennisson
8.1 Introduction
105(1)
8.2 Shear Modulus and Rheological Models
106(7)
8.2.1 Rheological Models and Mechanical Response of the Solid
106(1)
8.2.2 Voigt's Model
106(1)
8.2.3 Maxwell's Model
107(2)
8.2.4 Standard Linear Model
109(1)
8.2.5 Fractional Rheological Models and Biological Tissues
110(1)
8.2.5.1 Spring-pot
110(1)
8.2.6 Generalized Maxwell and Voigt Models
111(2)
8.3 Applications of Rheological Models
113(3)
8.3.1 Blood Coagulation
114(1)
8.3.2 Hydrogel Characterization
114(2)
8.3.3 Some Conclusions
116(1)
References
116(2)
9 Wave Propagation in Viscoelastic Materials
118(11)
Yue Wang
Michael F. Insana
9.1 Introduction
118(1)
9.2 Estimating the Complex Shear Modulus from Propagating Waves
119(1)
9.3 Wave Generation and Propagation
120(2)
9.4 Rheological Models
122(2)
9.5 Experimental Results and Applications
124(1)
9.5.1 Validation of Shear Wave and Surface Wave Elasticity Imaging on Phantoms
124(1)
9.5.2 3D Modulus Reconstruction of Sample with Inclusion
124(1)
9.5.3 Modeling of Viscoelastic Material
125(1)
9.6 Summary
125(1)
References
126(3)
Section IV Static and Low Frequency Elastography 129(98)
10 Validation of Quantitative Linear and Nonlinear Compression Elastography
131(12)
Jean Francois Dord
Sevan Goenezen
Assad A. Oberai
Paul E. Barbone
Jingfeng Jiang
Timothy J. Hall
Theo Pavan
10.1 Introduction
131(1)
10.2 Methods
132(2)
10.2.1 The Inverse Algorithm
132(1)
10.2.2 Phantom Description and RF Data Acquisition
132(1)
10.2.3 Displacement Estimation
133(1)
10.3 Results
134(3)
10.3.1 Description of the Forward Problem
134(1)
10.3.2 Options for the Optimization Strategy
134(1)
10.3.3 Shear Modulus Images
135(1)
10.3.4 Nonlinear Parameter Images
135(1)
10.3.5 Axial Strain Images
136(1)
10.4 Discussion
137(3)
10.4.1 Analysis of the Shear Modulus Distributions
137(1)
10.4.2 Analysis of the Nonlinear Parameter Images
138(1)
10.4.3 Effect of Varying Regularization Parameters
138(2)
10.4.4 Effect of Boundary Conditions on Lateral Edges
140(1)
10.5 Conclusions
140(1)
Acknowledgement
141(1)
References
141(2)
11 Cardiac Strain and Strain Rate Imaging
143(18)
Brecht Heyde
Oana Mirea
Jan D'hooge
11.1 Introduction
143(1)
11.2 Strain Definitions in Cardiology
143(2)
11.3 Methodologies Towards Cardiac Strain (Rate) Estimation
145(4)
11.3.1 Doppler-based Methods
145(2)
11.3.2 Optical Flow Methods
147(1)
11.3.2.1 Differential Methods
147(1)
11.3.2.2 Region-based Methods
147(1)
11.3.2.3 Phase-based methods
148(1)
11.3.3 Registration-based Techniques
148(1)
11.3.4 Biomechanical Models
149(1)
11.3.5 Statistical Models
149(1)
11.4 Experimental Validation of the Proposed Methodologies
149(2)
11.4.1 Synthetic Data Testing
150(1)
11.4.2 Mock Model Testing
150(1)
11.4.3 Experimental Animal Testing
151(1)
11.4.4 In Vivo Human Testing
151(1)
11.5 Clinical Applications
151(2)
11.6 Future Developments
153(1)
References
154(7)
12 Vascular and Intravascular Elastography
161(10)
Marvin M. Doyley
12.1 Introduction
161(1)
12.2 General Principles
161(7)
12.2.1 Strain-based Vascular Imaging Methods
162(2)
12.2.2 Model-based Imaging
164(4)
12.3 Conclusion
168(1)
References
168(3)
13 Viscoelastic Creep Imaging
171(18)
Carolina Amador Carrascal
13.1 Introduction
171(1)
13.2 Overview of Governing Principles
172(1)
13.2.1 Viscoelastic Behavior
172(1)
13.2.2 Creep
172(1)
13.2.3 Acoustic Radiation Force
173(1)
13.3 Imaging Techniques
173(14)
13.3.1 Kinetic Acoustic Vitreoretinal Examination (KAVE)
173(3)
13.3.2 Monitored Steady-state Excitation and Recovery (MSSER) Radiation Force Imaging
176(1)
13.3.3 Viscoelastic Response (VisR) Imaging
177(2)
13.3.4 Acoustic Radiation Force-induced Creep (RFIC)
179(4)
13.3.5 Acoustic Radiation Force-induced Creep-recovery (RFICR)
183(4)
13.4 Conclusion
187(1)
References
187(2)
14 Intrinsic Cardiovascular Wave and Strain Imaging
189(38)
Elisa Konofagou
14.1 Introduction
189(1)
14.2 Cardiac Imaging
189(19)
14.2.1 Myocardial Elastography
189(1)
14.2.1.1 Introduction
189(1)
14.2.1.2 Mechanical Deformation of Normal and Ischemic or Infarcted Myocardium
190(1)
14.2.1.3 Myocardial Elastography
190(1)
14.2.1.4 Simulations
194(1)
14.2.1.5 Myocardial ischemia and infarction detection in canines in vivo
194(1)
14.2.1.6 Validation of Myocardial Elastography against CT Angiography
195(2)
14.2.2 Electromechanical Wave Imaging (EWI)
197(1)
14.2.2.1 Cardiac Arrhythmias
197(1)
14.2.2.2 Clinical Diagnosis of Atrial Arrhythmias
198(1)
14.2.2.3 Treatment of Atrial Arrhythmias
198(1)
14.2.2.4 Electromechanical Wave Imaging (EWI)
198(1)
14.2.2.5 Imaging the Electromechanics of the Heart
202(1)
14.2.2.6 EWI Sequences
202(1)
14.2.2.7 Characterization of Atrial Arrhythmias in Canines In Vivo
207(1)
14.2.2.8 EWI in Normal Human Subjects and with Arrhythmias
207(1)
14.3 Vascular Imaging
208(11)
14.3.1 Stroke
208(1)
14.3.2 Stroke and Plaque Stiffness
209(1)
14.3.3 Abdominal Aortic Aneurysms
210(1)
14.3.4 Pulse Wave Velocity (PWV)
211(1)
14.3.5 Pulse Wave Imaging
211(1)
14.3.6 Methods
211(1)
14.3.6.1 PWI System using Parallel Beamforming
212(1)
14.3.6.2 Coherent Compounding
214(1)
14.3.6.3 Flow Measurement
215(1)
14.3.6.4 3D PWI
215(1)
14.3.7 PWI Performance Assessment in Experimental Phantoms
216(1)
14.3.8 Mechanical Testing
217(1)
14.3.9 PWI in Aortic Aneurysms and Carotid Plaques in Human Subjects In Vivo
218(1)
14.3.9.1 Abdominal Aortic Aneurysms
218(1)
14.3.9.2 Carotid Plaques
219(1)
Acknowledgements
219(1)
References
219(8)
Section V Harmonic Elastography Methods 227(68)
15 Dynamic Elasticity Imaging
229(9)
Kevin J. Parker
15.1 Vibration Amplitude Sonoelastography: Early Results
229(1)
15.2 Sonoelastic Theory
229(3)
15.3 Vibration Phase Gradient Sonoelastography
232(1)
15.4 Crawling Waves
233(1)
15.5 Clinical Results
233(1)
15.6 Conclusion
234(1)
Acknowledgments
235(1)
References
235(3)
16 Harmonic Shear Wave Elastography
238(12)
Heng Zhao
16.1 Introduction
238(1)
16.2 Basic Principles
239(3)
16.2.1 Vibration Source
239(1)
16.2.2 Motion Detection
239(1)
16.2.3 Directional Filter
240(1)
16.2.4 2D Shear Wave Speed Estimation
241(1)
16.2.5 Weighted Averaging
242(1)
16.2.6 Shear Wave Speed Image Compounding
242(1)
16.3 Ex Vivo Validation
242(2)
16.3.1 Experimental Setup
242(1)
16.3.2 Phantom Experiments
243(1)
16.4 In Vivo Application
244(2)
16.5 Summary
246(1)
Acknowledgments
247(1)
References
247(3)
17 Vibro-acoustography and its Medical Applications
250(14)
Azra Alizad
Mostafa Fatemi
17.1 Introduction
250(1)
17.2 Background
250(1)
17.2.1 General Principles of VA and Method
250(1)
17.2.2 Features of a Vibro-acoustography Image
251(1)
17.3 Application of Vibro-acoustography for Detection of Calcifications
251(3)
17.4 In Vivo Breast Vibro-acoustography
254(5)
17.4.1 Background on Breast Imaging
254(1)
17.4.2 Method of In Vivo VA and Results
254(5)
17.5 In Vivo Thyroid Vibro-acoustography
259(1)
17.6 Limitations and Further Future Plans
260(1)
Acknowledgments
261(1)
References
261(3)
18 Harmonic Motion Imaging
264(20)
Elisa Konofagou
18.1 Introduction
264(1)
18.2 Background
264(3)
18.2.1 Ultrasound-guided HIFU
264(1)
18.2.2 MR-guided HIFU
265(1)
18.2.3 Harmonic Motion Imaging
265(1)
18.2.4 Harmonic Motion Imaging for Focused Ultrasound (HMIFU)
266(1)
18.3 Methods
267(6)
18.3.1 The HMIFU System
267(1)
18.3.2 Parallel Beamforming
268(1)
18.3.3 HIFU Treatment Planning
268(1)
18.3.4 HIFU Treatment Monitoring
268(1)
18.3.5 HIFU Treatment Assessment
268(1)
18.3.6 Displacement Estimation
268(1)
18.3.7 Real-time Implementation
269(1)
18.3.8 Beam Steering
270(1)
18.3.9 Modulus Estimation
271(2)
18.4 Preclinical Studies
273(4)
18.4.1 Detection and Diagnosis of Breast Tumors
273(1)
18.4.1.1 Phantom Studies
273(1)
18.4.1.2 Ex Vivo Breast Specimens
273(1)
18.4.2 Detection and Treatment Monitoring of Breast and Pancreatic Tumors In Vivo
274(1)
18.4.2.1 Breast Mouse Tumor Model
274(1)
18.4.2.2 Pancreatic Mouse Tumor Model
277(1)
18.5 Future Prospects
277(2)
Acknowledgements
279(1)
References
279(5)
19 Shear Wave Dispersion Ultrasound Vibrometry
284(11)
Pengfei Song
Shigao Chen
19.1 Introduction
284(1)
19.2 Principles of Shear Wave Dispersion Ultrasound Vibrometry (SDUV)
284(2)
19.3 Clinical Applications
286(5)
19.3.1 Tissue-mimicking Phantoms
286(2)
19.3.2 Liver
288(1)
19.3.3 Skeletal Muscle
288(1)
19.3.4 Heart
288(1)
19.3.5 Prostate
289(1)
19.3.6 Kidney
290(1)
19.4 Summary
291(1)
References
292(3)
Section VI Transient Elastography Methods 295(104)
20 Transient Elastography: From Research to Noninvasive Assessment of Liver Fibrosis Using Fibroscan®
297(21)
Laurent Sandrin
Magali Sasso
Stephane Audiere
Cecile Bastard
Celine Fournier
Jennifer Oudry
Veronique Miette
Stefan Catheline
20.1 Introduction
297(1)
20.2 Principles of Transient Elastography
297(4)
20.2.1 Elastic Wave Propagation in Soft Tissues
297(1)
20.2.2 Early Developments of Transient Elastography
298(1)
20.2.3 ID Transient Elastography: A Purely Longitudinal Shear Wave
299(1)
20.2.4 Ultrafast Imaging for Transient Elastography
300(1)
20.2.5 Validation on Phantoms
301(1)
20.3 Fibroscan
301(5)
20.3.1 An Average Stiffness Measurement Device
301(2)
20.3.2 Probes Adapted to Patient Morphology
303(1)
20.3.3 Narrow Band and Controlled Shear Wave Frequency Content
303(1)
20.3.4 Low Acoustic Output Power
304(1)
20.3.5 Standardized Examination Procedure
304(2)
20.4 Application of Vibration-controlled Transient Elastography to Liver Diseases
306(3)
20.4.1 A Questioned Gold Standard
307(1)
20.4.2 Viral Hepatitis
307(1)
20.4.3 Fatty Liver Disease
307(1)
20.4.4 Other Diseases
307(1)
20.4.5 Cirrhosis
307(1)
20.4.6 Prognosis
307(1)
20.4.7 Confounding Factors
308(1)
20.4.8 The Pressure-Matrix--Stiffness Sequence Hypothesis
308(1)
20.4.9 Advanced Applications: CAP
308(1)
20.4.10 Spleen Stiffness Measurements
308(1)
20.4.11 Conclusion
309(1)
20.5 Other Applications of Transient Elastography
309(1)
20.5.1 Preclinical Applications of Transient Micro-elastography
309(1)
20.5.2 Adipose Tissue
310(1)
20.6 Conclusion
310(1)
References
311(7)
21 From Time Reversal to Natural Shear Wave Imaging
318(16)
Stefan Catheline
21.1 Introduction: Time Reversal Shear Wave in Soft Solids
318(2)
21.2 Shear Wave Elastography using Correlation: Principle and Simulation Results
320(3)
21.3 Experimental Validation in Controlled Media
323(5)
21.4 Natural Shear Wave Elastography: First In Vivo Results in the Liver, the Thyroid, and the Brain
328(3)
21.5 Conclusion
331(1)
References
331(3)
22 Acoustic Radiation Force Impulse Ultrasound
334(23)
Tomasz J. Czernuszewicz
Caterina M. Gallippi
22.1 Introduction
334(1)
22.2 Impulsive Acoustic Radiation Force
334(1)
22.3 Monitoring ARFI-induced Tissue Motion
335(5)
22.3.1 Displacement Resolution
335(1)
22.3.2 Displacement Underestimation
336(2)
22.3.3 Clutter Artifacts
338(2)
22.4 ARFI Data Acquisition
340(1)
22.5 ARFI Image Formation
341(2)
22.5.1 Physiological Motion Rejection
341(1)
22.5.2 ARFI Image Resolution and Contrast
341(2)
22.6 Real-time ARFI Imaging
343(2)
22.6.1 Efficient Beam Sequencing
343(2)
22.6.2 GPU-based Processing
345(1)
22.7 Quantitative ARFI Imaging
345(1)
22.8 ARFI Imaging in Clinical Applications
346(4)
22.9 Commercial Implementation
350(1)
22.10 Related Technologies
350(1)
22.11 Conclusions
351(1)
References
351(6)
23 Supersonic Shear Imaging
357(11)
Jean-Luc Gennisson
Mickael Tanter
23.1 Introduction
357(1)
23.2 Radiation Force Excitation
357(5)
23.2.1 Radiation Force
357(1)
23.2.2 Focus Duration
358(1)
23.2.3 Impulse Response
359(1)
23.2.4 Mach Cone and Quasi Plane Shear Wave
360(1)
23.2.5 Norms and Safety
361(1)
23.3 Ultrafast Imaging
362(2)
23.3.1 Ultrasonic Plane Wave Imaging
362(1)
23.3.2 Shear Wave Detection
363(1)
23.4 Shear Wave Speed Mapping
364(1)
23.4.1 Building an Image
364(1)
23.5 Conclusion
365(1)
References
366(2)
24 Single Tracking Location Shear Wave Elastography
368(20)
Stephen A. McAleavey
24.1 Introduction
368(2)
24.2 SMURF
370(3)
24.3 STL-SWEI
373(3)
24.4 Noise in SWE/Speckle Bias
376(4)
24.5 Estimation of viscoelastic parameters (STL-VE)
380(4)
24.6 Conclusion
384(1)
References
384(4)
25 Comb-push Ultrasound Shear Elastography
388(11)
Pengfei Song
Shigao Chen
25.1 Introduction
388(1)
25.2 Principles of Comb-push Ultrasound Shear Elastography (CUSE)
389(7)
25.3 Clinical Applications of CUSE
396(1)
25.4 Summary
396(1)
References
397(2)
Section VII Emerging Research Areas in Ultrasound Elastography 399(72)
26 Anisotropic Shear Wave Elastography
401(21)
Sara Aristizabal
26.1 Introduction
401(1)
26.2 Shear Wave Propagation in Anisotropic Media
402(1)
26.3 Anisotropic Shear Wave Elastography Applications
403(17)
26.3.1 Influence of Tissue Anisotropy on the SWE Evaluation of Kidneys
403(1)
26.3.1.1 Experimental Setup
403(1)
26.3.1.2 Experimental Results
404(1)
26.3.2 Influence of Tissue Anisotropy on the SWE Evaluation of the Achilles Tendon
404(1)
26.3.2.1 Experimental Setup
404(1)
26.3.2.2 Experimental Results
406(1)
26.3.3 Influence of Tissue Anisotropy on the SWE Evaluation of Skeletal Muscle
406(1)
26.3.3.1 Experimental Setup
406(1)
26.3.3.2 Experimental Results
409(1)
26.3.4 Influence of Tissue Anisotropy on the SWE Evaluation of the Myocardium
410(1)
26.3.4.1 Experimental Setup
411(1)
26.3.4.2 Experimental Results: ETI Method
411(3)
26.3.5 Design and Evaluation of Tissue-mimicking Phantoms to Characterize the Anisotropy Phenomenon in a Laboratory Setting
414(1)
26.3.5.1 Experimental Setup
414(1)
26.3.5.2 Experimental Results
416(4)
26.4 Conclusion
420(1)
References
420(2)
27 Application of Guided Waves for Quantifying Elasticity and Viscoelasticity of Boundary Sensitive Organs
422(20)
Sara Aristizabal
Matthew Urban
Luiz Vasconcelos
Benjamin Wood
Miguel Bernal
Javier Brum
Ivan Nenadic
27.1 Introduction
422(1)
27.2 Myocardium
422(4)
27.3 Arteries
426(5)
27.4 Urinary Bladder
431(2)
27.5 Cornea
433(2)
27.6 Tendons
435(4)
27.7 Conclusions
439(1)
References
439(3)
28 Model-free Techniques for Estimating Tissue Viscoelasticity
442(9)
Daniel Escobar
Luiz Vasconcelos
Carolina Amador Carrascal
Ivan Nenadic
28.1 Introduction
442(1)
28.2 Overview of Governing Principles
442(1)
28.2.1 Wave Propagation
442(1)
28.3 Imaging Techniques
443(6)
28.3.1 Acoustic Radiation Force-induced Creep (RFIC) and Acoustic Radiation Force-induced Creep-Recovery (RFICR)
443(1)
28.3.2 Attenuation Measuring Ultrasound Shear Wave Elastography (AMUSE)
444(5)
28.4 Conclusion
449(1)
References
449(2)
29 Nonlinear Shear Elasticity
451(20)
Jean-Luc Gennisson
Sara Aristizabal
29.1 Introduction
451(1)
29.2 Shocked Plane Shear Waves
451(4)
29.2.1 Theoretical Developments
452(1)
29.2.2 Numerical Simulation with Modified Burgers Equation
453(1)
29.2.3 Experimental Study
454(1)
29.3 Nonlinear Interaction of Plane Shear Waves
455(5)
29.4 Acoustoelasticity Theory
460(5)
29.5 Assessment of 4th Order Nonlinear Shear Parameter
465(3)
29.6 Conclusion
468(1)
References
468(3)
Section VIII Clinical Elastography Applications 471(96)
30 Current and Future Clinical Applications of Elasticity Imaging Techniques
473(19)
Matthew Urban
30.1 Introduction
473(1)
30.2 Clinical Implementation and Use of Elastography
474(1)
30.3 Clinical Applications
475(5)
30.3.1 Liver
475(1)
30.3.2 Breast
476(1)
30.3.3 Thyroid
476(1)
30.3.4 Musculoskeletal
476(1)
30.3.5 Kidney
477(1)
30.3.6 Heart
478(1)
30.3.7 Arteries and Atherosclerotic Plaques
479(1)
30.4 Future Work in Clinical Applications of Elastography
480(1)
30.5 Conclusions
480(1)
Acknowledgments
480(1)
References
481(11)
31 Abdominal Applications of Shear Wave Ultrasound Vibrometry and Supersonic Shear Imaging
492(12)
Pengfei Song
Shigao Chen
31.1 Introduction
492(1)
31.2 Liver Application
492(2)
31.3 Prostate Application
494(1)
31.4 Kidney Application
495(1)
31.5 Intestine Application
496(1)
31.6 Uterine Cervix Application
497(1)
31.7 Spleen Application
497(1)
31.8 Pancreas Application
497(1)
31.9 Bladder Application
498(1)
31.10 Summary
499(1)
References
499(5)
32 Acoustic Radiation Force-based Ultrasound Elastography for Cardiac Imaging Applications
504(16)
Stephanie A. Eyerly-Webb
Maryam Vejdani-Jahromi
Vaibhav Kakkad
Peter Hollender
David Bradway
Gregg Trahey
32.1 Introduction
504(1)
32.2 Acoustic Radiation Force-based Elastography Techniques
504(1)
32.3 ARF-based Elasticity Assessment of Cardiac Function SOS
32.3.1 ARF-based Measurement of Cardiac Elasticity and Function
505(3)
32.3.2 Clinical Translation of Transthoracic ARF-based Methods for Cardiac Stiffness Assessment
508(2)
32.3.3 ARFI Imaging of Myocardial Ischemia and Infarct
510(1)
32.4 ARF-based Image Guidance for Cardiac Radiofrequency Ablation Procedures
510(5)
32.4.1 Clinical Translation of ARFI Imaging for Acute Ablation Lesion Assessment
511(2)
32.4.2 Preliminary Clinical Investigations of ARFI Imaging of Ablation Lesions
513(2)
32.5 Conclusions
515(1)
Funding Acknowledgements
515(1)
References
516(4)
33 Cardiovascular Application of Shear Wave Elastography
520(14)
Pengfei Song
Shigao Chen
33.1 Introduction
520(1)
33.2 Cardiovascular Shear Wave Imaging Techniques
521(4)
33.2.1 Cardiovascular Shear Wave Generation Methods
521(2)
33.2.2 Cardiovascular Viscoelasticity Calculation Methods
523(2)
33.2.3 Cardiovascular Shear Wave Detection Methods
525(1)
33.3 Clinical Applications of Cardiovascular Shear Wave Elastography
525(4)
33.3.1 Ischemic Myocardial Infarction
526(1)
33.3.2 Assessment of Myocardial Contractility
527(1)
33.3.3 Myocardial Architecture Imaging
527(1)
33.3.4 Evaluation of Atrial Radio Frequency Ablation
527(1)
33.3.5 Coronary Perfusion Pressure Quantification
528(1)
33.3.6 Carotid Artery Plaque Characterization
528(1)
33.4 Summary
529(1)
References
530(4)
34 Musculoskeletal Applications of Supersonic Shear Imaging
534(11)
Jean-Luc Gennisson
34.1 Introduction
534(1)
34.2 Muscle Stiffness at Rest and During Passive Stretching
535(2)
34.3 Active and Dynamic Muscle Stiffness
537(2)
34.3.1 Isometric Contraction
537(2)
34.3.2 Involuntary and Voluntary Contraction
539(1)
34.4 Tendon Applications
539(2)
34.5 Clinical Applications
541(1)
34.6 Future Directions
542(1)
References
542(3)
35 Breast Shear Wave Elastography
545(12)
Azra Alizad
35.1 Introduction
545(1)
35.2 Background
545(1)
35.3 Breast Elastography Techniques
546(2)
35.3.1 Shear Wave Elasticity Imaging (SWEI)
547(1)
35.3.2 Supersonic Shear Imaging (SSI)
547(1)
35.3.3 Virtual Touch Tissue Quantification using Acoustic Radiation Force Impulse
547(1)
35.3.4 Comb-push Ultrasound Shear Elastography (CUSE)
547(1)
35.4 Application of CUSE for Breast Cancer Detection
548(1)
35.5 CUSE on a Clinical Ultrasound Scanner
549(2)
35.6 Limitations of Breast Shear Wave Elastography
551(1)
35.7 Conclusion
552(1)
Acknowledgments
552(1)
References
552(5)
36 Thyroid Shear Wave Elastography
557(10)
Azra Alizad
36.1 Introduction
557(1)
36.2 Background
557(1)
36.3 Role of Ultrasound and its Limitation in Thyroid Cancer Detection
557(1)
36.4 Fine Needle Aspiration Biopsy (FNAB)
558(1)
36.5 The Role of Elasticity Imaging
558(3)
36.5.1 Thyroid Ultrasound Elastography
559(1)
36.5.2 Thyroid Shear Wave Elastography
559(1)
36.5.3 Virtual Touch Tissue Imaging using Acoustic Radiation Force Impulse (ARFI)
559(1)
36.5.4 Supersonic Imagine (SSI)
559(1)
36.5.5 Comb-push Ultrasound Shear Elastography (CUSE)
560(1)
36.6 Application of CUSE on Thyroid
561(1)
36.7 CUSS on Clinical Ultrasound Scanner
561(2)
36.8 Conclusion
563(1)
Acknowledgments
564(1)
References
564(3)
Section IX Perspective on Ultrasound Elastography 567(14)
37 Historical Growth of Ultrasound Elastography and Directions for the Future
569(12)
Armen Sarvazyan
Matthew W. Urban
37.1 Introduction
569(1)
37.2 Elastography Publication Analysis
569(5)
37.3 Future Investigations of Acoustic Radiation Force for Elastography
574(2)
37.3.1 Nondissipative Acoustic Radiation Force
574(1)
37.3.2 Nonlinear Enhancement of Acoustic Radiation Force
575(1)
37.3.3 Spatial Modulation of Acoustic Radiation Force Push Beams
575(1)
37.4 Conclusions
576(1)
Acknowledgments
577(1)
References
577(4)
Index 581
Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic, USA.

Jean-Luc Gennisson, Imagerie par Résonance Magnétique Médicale et Multi-Modalités, France.

Miguel Bernal, Universidad Pontificia Bolivariana, Colombia.

Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France.