Muutke küpsiste eelistusi

E-raamat: Ultrasound in Medicine [Taylor & Francis e-raamat]

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Taylor & Francis e-raamat
  • Hind: 387,76 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 553,94 €
  • Säästad 30%
Teised raamatud teemal:
Ultrasound in Medicine is a broad-ranging study of medical ultrasound, including ultrasound propagation, interaction with tissue, and innovations in the application of ultrasound in medicine. The book focuses specifically on the science and technology-the underlying physics and engineering. It examines the most closely related aspects of these basic sciences in clinical application and reviews the success of technological innovations in improving medical diagnosis and treatment. The book bridges the gap between tutorial texts widely available for ultrasound and medical training and theoretical works on acoustics.
Contributing Authors xvii
Glossary xix
Introduction xxv
Francis A. Duck
Acknowledgments xxx
References xxx
PART 1 THE PHYSICS OF MEDICAL ULTRASOUND
1(88)
1 Ultrasonic Fields: Structure and Prediction
3(20)
Victor F. Humphrey
Francis A. Duck
1.1 Circular plane sources
4(6)
1.1.1 Pressure variation on the axis
6(3)
1.1.2 Pressure variation off the axis
9(1)
1.2 Pulsed fields
10(3)
1.3 Focused fields
13(2)
1.4 Source amplitude weighting
15(2)
1.5 Rectangular sources
17(4)
1.6 Conclusion 20 References
21(2)
2 Nonlinear Effects in Ultrasound Propagation
23(16)
Andrew C. Baker
2.1 Nonlinear propagation in medical ultrasound
24(3)
2.2 Consequences of nonlinear propagation
27(12)
2.2.1 Experimental measurements
27(4)
2.2.2 Theoretical predictions
31(5)
2.2.3 Clinical systems 34 References
36(3)
3 Radiation Pressure and Acoustic Streaming
39(18)
Francis A. Duck
3.1 Radiation pressure
39(1)
3.2 Langevin radiation pressure, PLan
40(3)
3.3 Radiation stress tensor
43(1)
3.3.1 The excess pressure
43(1)
3.4 Rayleigh radiation pressure, PRay
44(2)
3.5 Acoustic streaming
46(6)
3.5.1 Methods of measuring acoustic streaming
50(2)
3.6 Observations in vivo of radiation pressure effects
52(1)
3.6.1 Streaming
52(1)
3.6.2 Observed biological effects apparently related to radiation pressure
52(1)
3.7 Discussion
53(4)
References
54(3)
4 Ultrasonic Properties of Tissues
57(32)
Jeffrey C. Bamber
4.1 Basic concepts
57(7)
4.1.1 Attenuation, absorption, scattering and reflection
57(4)
4.1.2 Speed of sound
61(1)
4.1.3 Nonlinearity
61(1)
4.1.4 Transducer diffraction field
61(1)
4.1.5 Pulse-echo imaging, speckle and echo texture
62(2)
4.1.6 Receiver phase sensitivity
64(1)
4.2 Measurement methods
64(9)
4.2.1 Measurement of the absorption coefficient
64(1)
4.2.2 Measurement of the attenuation coefficient
65(3)
4.2.3 Measurement of sound speed
68(2)
4.2.4 Measurement of scattering
70(2)
4.2.5 Measurement of nonlinearity
72(1)
4.3 Ultrasonic properties of tissues
73(16)
4.3.1 Absorption and attenuation
73(3)
4.3.2 Sound speed
76(2)
4.3.3 Scattering
78(5)
4.3.4 Nonlinearity
83(1)
References
83(6)
PART 2 TECHNOLOGY AND MEASUREMENT IN DIAGNOSTIC IMAGING
89(60)
5 Transducer Arrays for Medical Ultrasound Imaging
91(38)
Thomas L. Szabo
5.1 Piezoelectric transducer elements
91(11)
5.1.1 A basic transducer model
91(2)
5.1.2 Transducer elements as acoustic resonators
93(2)
5.1.3 Transducer array structures
95(1)
5.1.4 Transducer models
96(3)
5.1.5 Transducer design
99(3)
5.2 Imaging
102(1)
5.3 Beam-forming
103(5)
5.4 Other imaging modes
108(1)
5.5 Conclusion
109(4)
References 109 CURRENT DOPPLER TECHNOLOGY AND TECHNIQUES
113(1)
Peter N. T. Wells
6.1 The Doppler effect
113(1)
6.2 The origin of the Doppler signal
114(2)
6.3 The narrow frequency band technique
116(4)
6.3.1 The continuous wave Doppler technique
116(2)
6.3.2 The pulsed Doppler technique
118(2)
6.4 Frequency spectrum analysis
120(1)
6.5 Duplex scanning
120(1)
6.6 Colour flow imaging
121(5)
6.6.1 Basic principles
121(2)
6.6.2 Autocorrelation detection
123(1)
6.6.3 Other Doppler frequency estimators
123(1)
6.6.4 Time-domain processing
124(1)
6.6.5 Colour coding schemes
125(1)
6.6.6 Three-dimensional display
126(1)
6.7 Contrast agents and second harmonic imaging
126(3)
References
127(2)
7 The Purpose and Techniques of Acoustic Output Measurement
129(20)
T. A. Whittingham
7.1 Why measure acoustic outputs?
129(1)
7.2 Ultrasound damage mechanisms and their biological significance
129(4)
7.2.1 Heating
130(1)
7.2.2 Cavitation
131(2)
7.3 Trends in acoustic outputs
133(1)
7.4 Regulations and standards
134(3)
7.4.1 FDA 510(k) regulations
135(1)
7.4.2 AIUM/NEMA Output Display Standard
135(1)
7.4.3 IEC 61157
136(1)
7.5 Is there a need for independent measurements?
137(1)
7.6 Which output parameters should be measured?
137(1)
7.7 The Newcastle portable system for acoustic output measurements at hospital sites
138(4)
7.7.1 The hydrophone and pre-amplifier
138(2)
7.7.2 Variable attenuator, power amplifier and power meter
140(1)
7.7.3 Oscilloscope
141(1)
7.7.4 Oscilloscope camera, PC and digitisation tablet
141(1)
7.7.5 The measurement tank
141(1)
7.7.6 The hydrophone positioning system
142(1)
7.7.7 The probe mounting system
142(1)
7.7.8 Calibration and accuracy
142(1)
7.8 The NPL ultrasound beam calibrator
142(1)
7.9 Measurement of acoustic power
143(2)
7.10 Finding worst case values
145(1)
7.10.1 Worst case Ispta of stationary beams, e.g. pulsed Doppler mode
145(1)
7.10.2 Worst case Ispta for scanned beam modes, e.g. B-mode
146(1)
7.11 Conclusions
146(3)
References
147(2)
PART 3 ULTRASOUND HYPERTHERMIA AND SURGERY
149(48)
8 Ultrasound Hyperthermia and the Prediction of Heating
151(26)
Jeffrey W. Hand
8.1 Ultrasound hyperthermia
151(14)
8.1.1 Introduction
151(1)
8.1.2 Ultrasound intensity, attenuation and absorption
152(2)
8.1.3 Transducers for hyperthermia
154(9)
8.1.4 High-intensity short-duration hyperthermia
163(2)
8.2 Prediction of heating
165(6)
8.2.1 Thermal conduction
165(1)
8.2.2 Pennes' bioheat transfer equation
166(2)
8.2.3 Other approaches to thermal modelling
168(3)
8.3 Summary
171(6)
Acknowledgments
172(1)
References
172(5)
9 Focused Ultrasound Surgery
177(12)
Gail Rterhaar
9.1 Mechanisms of lesion production
178(1)
9.1.1 Thermal effects
178(1)
9.1.2 Cavitation
179(1)
9.2 Lesion shape and position
179(1)
9.3 Sources of ultrasound
179(3)
9.4 Imaging of focused ultrasound surgery treatments
182(1)
9.4.1 Ultrasound techniques
182(1)
9.4.2 Magnetic resonance imaging
182(1)
9.5 Clinical applications
182(2)
9.5.1 Neurology
182(1)
9.5.2 Ophthalmology
183(1)
9.5.3 Urology
183(1)
9.5.4 Oncology
184(1)
9.5.5 Other applications
184(1)
9.6 Conclusion
184(5)
References
184(5)
10 Acoustic Wave Lithotripsy
189(8)
Michael Halliwell
10.1 Percutaneous continuous-wave systems
189(1)
10.2 Extracorporeally induced lithotripsy
190(7)
10.2.1 Types of pressure wave transducer
190(1)
10.2.2 Positioning systems
191(1)
10.2.3 Field measurement
192(4)
References
196(1)
PART 4 ULTRASOUND AND BUBBLES
197(64)
11 An Introduction to Acoustic Cavitation
199(26)
Timothy G. Leighton
11.1 The acoustic properties of the bubble
199(7)
11.1.1 Stiffness and inertia
199(1)
11.1.2 Resonance
200(1)
11.1.3 Inertial cavitation
201(5)
11.2 Types of cavitation
206(4)
11.3 The implications of the occurrence of one type of cavitation for the occurrence of another
210(7)
11.3.1 Alteration of the bubble size by rectified diffusion
210(2)
11.3.2 Alteration of the acoustic pressure field at the bubble by radiation forces
212(2)
11.3.3 Nucleation
214(1)
11.3.4 Population effects
214(3)
11.4 The implications of the occurrence of one type of cavitation for causing change to the medium
217(2)
11.5 Conclusion
219(6)
References
219(6)
12 Echo-Enhancing (Ultrasound Contrast) Agents
225(16)
David O. Cosgrove
12.1 Non-bubble approaches
225(1)
12.2 Microbubble agents
226(10)
12.2.1 History
226(3)
12.2.2 Safety of contrast agents
229(1)
12.2.3 Basic principles
230(1)
12.2.4 Clinical applications
230(3)
12.2.5 Quantification and functional studies
233(1)
12.2.6 New uses: agents and techniques
234(2)
12.3 Conclusion
236(5)
References
236(5)
13 Sonochemistry and Drug Delivery
241(20)
Gareth J. Price
13.1 Cavitation and its effects
243(2)
13.2 What can ultrasound do for chemists?
245(7)
13.3 Bio-effects and drug delivery
252(9)
References
256(5)
PART 5 RESEARCH TOPICS IN MEDICAL ULTRASOUND
261(46)
14 Imaging Elastic Properties of Tissue
263(16)
James F. Greenleaf
Richard L. Ehman
Mostafa Fatemi
Raja Muthupillai
14.1 Introduction
263(1)
14.1.1 Exogenous transverse waves: imaging with MRE
263(1)
14.1.2 Stimulated acoustic emission: imaging with USAE
264(1)
14.2 Magnetic resonance elastography (MRE)
264(6)
14.2.1 Theory
264(1)
14.2.2 Methods
265(1)
14.2.3 MRE results
266(4)
14.3 Ultrasound stimulated acoustic emission (USAE)
270(5)
14.3.1 Theory of USAE
270(2)
14.3.2 USAE results
272(3)
14.4 Conclusions
275(4)
14.4.1 MRE
275(1)
14.4.2 USAE
276(1)
Acknowledgments
276(1)
References
276(3)
15 The Signal-to-Noise Relationship for Investigative Ultrasound
279(8)
Christopher R. Hill
References
286(1)
16 Challenges in the Ultrasonic Measurement of Bone
287(20)
John G. Truscott
Roland Strelitzki
16.1 Bone
288(1)
16.2 Ultrasonic measurements suitable for bone
289(6)
16.2.1 Speed of sound (SOS)
291(1)
16.2.2 Attenuation
292(3)
16.2.3 Problems
295(1)
16.3 Effect of structure on broadband ultrasonic attenuation
295(2)
16.4 Problems in the measurement of speed of sound
297(6)
16.4.1 Time domain (zero-crossing point measurement)
297(3)
16.4.2 Frequency domain measurements
300(3)
16.5 Discussion
303(4)
Acknowledgment
305(1)
References
305(2)
Index 307
Francis A. Duck, Andrew C. Baker, Hazel C. Starritt