Preface |
|
xi | |
|
|
1 | (12) |
|
1.1 Characteristics of Mathematical Models |
|
|
1 | (4) |
|
|
1 | (1) |
|
1.1.2 Model Design or Selection |
|
|
1 | (2) |
|
1.1.3 Constraints Due to the Model Type |
|
|
3 | (1) |
|
1.1.4 Mathematical Models |
|
|
3 | (1) |
|
1.1.5 Parameters and Variables |
|
|
4 | (1) |
|
1.2 Mathematical Model Properties |
|
|
5 | (6) |
|
1.2.1 Deterministic vs Stochastic |
|
|
5 | (1) |
|
1.2.2 Continuous vs Discrete Models |
|
|
6 | (1) |
|
1.2.3 Descriptive vs Explanatory |
|
|
7 | (1) |
|
1.2.4 Testing Explanatory Models |
|
|
8 | (1) |
|
1.2.5 Realism vs Generality |
|
|
9 | (1) |
|
1.2.6 When Is a Model a Theory? |
|
|
10 | (1) |
|
|
11 | (2) |
|
2 A Non-Introduction to R |
|
|
13 | (22) |
|
|
13 | (1) |
|
|
13 | (12) |
|
2.2.1 Getting Started with R |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.2.3 Getting Started with MQMF |
|
|
16 | (1) |
|
2.2.4 Examining Code within Functions |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.2.6 Random Number Generation |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.2.9 Dealing with Factors |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (8) |
|
|
25 | (2) |
|
2.3.2 Function Input Values |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.3.5 Function Inputs and Outputs |
|
|
29 | (4) |
|
2.4 Appendix: Less-Traveled Functions |
|
|
33 | (1) |
|
2.5 Appendix: Additional Learning Resources |
|
|
33 | (2) |
|
3 Simple Population Models |
|
|
35 | (30) |
|
|
35 | (13) |
|
3.1.1 The Discrete Logistic Model |
|
|
35 | (2) |
|
|
37 | (3) |
|
3.1.3 Finding Boundaries between Behaviours |
|
|
40 | (2) |
|
3.1.4 Classical Bifurcation Diagram of Chaos |
|
|
42 | (1) |
|
3.1.5 The Effect of Fishing on Dynamics |
|
|
43 | (3) |
|
|
46 | (2) |
|
3.2 Age-Structured Modelling Concepts |
|
|
48 | (4) |
|
3.2.1 Survivorship in a Cohort |
|
|
48 | (1) |
|
3.2.2 Instantaneous vs Annual Mortality Rates |
|
|
49 | (3) |
|
3.3 Simple Yield per Recruit |
|
|
52 | (8) |
|
3.3.1 Selectivity in Yield-per-Recruit |
|
|
55 | (2) |
|
3.3.2 The Baranov Catch Equation |
|
|
57 | (2) |
|
3.3.3 Growth and Weight-at-Age |
|
|
59 | (1) |
|
3.4 Full Yield-per-Recruit |
|
|
60 | (2) |
|
|
62 | (3) |
|
4 Model Parameter Estimation |
|
|
65 | (70) |
|
|
65 | (2) |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (4) |
|
|
70 | (1) |
|
4.3.2 A Length-at-Age Example |
|
|
71 | (1) |
|
4.3.3 Alternative Models of Growth |
|
|
72 | (1) |
|
4.4 Sum of Squared Residual Deviations |
|
|
73 | (14) |
|
4.4.1 Assumptions of Least-Squares |
|
|
74 | (1) |
|
4.4.2 Numerical Solutions |
|
|
74 | (1) |
|
4.4.3 Passing Functions as Arguments to Other Functions |
|
|
75 | (2) |
|
|
77 | (6) |
|
4.4.5 Objective Model Selection |
|
|
83 | (1) |
|
4.4.6 The Influence of Residual Error Choice on Model Fit |
|
|
84 | (2) |
|
4.4.7 Remarks on Initial Model Fitting |
|
|
86 | (1) |
|
|
87 | (3) |
|
4.5.1 Introductory Examples |
|
|
87 | (3) |
|
4.6 Likelihoods from the Normal Distribution |
|
|
90 | (8) |
|
4.6.1 Equivalence with Sum-of-Squares |
|
|
92 | (2) |
|
4.6.2 Fitting a Model to Data Using Normal Likelihoods |
|
|
94 | (4) |
|
4.7 Log-Normal Likelihoods |
|
|
98 | (10) |
|
4.7.1 Simplification of Log-Normal Likelihoods |
|
|
99 | (1) |
|
4.7.2 Log-Normal Properties |
|
|
99 | (3) |
|
4.7.3 Fitting a Curve Using Log-Normal Likelihoods |
|
|
102 | (3) |
|
4.7.4 Fitting a Dynamic Model Using Log-Normal Errors |
|
|
105 | (3) |
|
4.8 Likelihoods from the Binomial Distribution |
|
|
108 | (9) |
|
4.8.1 An Example Using Binomial Likelihoods |
|
|
109 | (3) |
|
4.8.2 Open Bay Juvenile Fur Seal Population Size |
|
|
112 | (2) |
|
4.8.3 Using Multiple Independent Samples |
|
|
114 | (2) |
|
4.8.4 Analytical Approaches |
|
|
116 | (1) |
|
|
117 | (1) |
|
4.10 Likelihoods from the Multinomial Distribution |
|
|
117 | (8) |
|
4.10.1 Using the Multinomial Distribution |
|
|
119 | (6) |
|
4.11 Likelihoods from the Gamma Distribution |
|
|
125 | (2) |
|
4.12 Likelihoods from the Beta Distribution |
|
|
127 | (1) |
|
|
128 | (6) |
|
|
128 | (2) |
|
|
130 | (1) |
|
4.13.3 Prior Probabilities |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
135 | (50) |
|
|
135 | (1) |
|
5.2 Productivity Parameters |
|
|
136 | (1) |
|
|
136 | (15) |
|
5.3.1 Seasonal Growth Curves |
|
|
137 | (5) |
|
5.3.2 Fabens Method with Tagging Data |
|
|
142 | (2) |
|
5.3.3 Fitting Models to Tagging Data |
|
|
144 | (2) |
|
5.3.4 A Closer Look at the Fabens Methods |
|
|
146 | (2) |
|
5.3.5 Implementation of Non-Constant Variances |
|
|
148 | (3) |
|
5.4 Objective Model Selection |
|
|
151 | (3) |
|
5.4.1 Akiake's Information Criterion |
|
|
151 | (2) |
|
5.4.2 Likelihood Ratio Test |
|
|
153 | (1) |
|
5.4.3 Caveats on Likelihood Ratio Tests |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (10) |
|
|
155 | (2) |
|
5.6.2 Alternative Maturity Ogives |
|
|
157 | (4) |
|
5.6.3 The Assumption of Symmetry |
|
|
161 | (4) |
|
|
165 | (10) |
|
|
165 | (1) |
|
5.7.2 Properties of "Good" Stock Recruitment Relationships |
|
|
166 | (1) |
|
5.7.3 Recruitment Overfishing |
|
|
167 | (1) |
|
5.7.4 Beverton and Holt Recruitment |
|
|
168 | (1) |
|
|
169 | (2) |
|
5.7.6 Deriso's Generalized Model |
|
|
171 | (1) |
|
5.7.7 Re-Parameterized Beverton-Holt Equation |
|
|
172 | (3) |
|
5.7.8 Re-Parameterized Ricker Equation |
|
|
175 | (1) |
|
|
175 | (5) |
|
|
175 | (1) |
|
|
176 | (1) |
|
5.8.3 Dome-Shaped Selection |
|
|
177 | (3) |
|
5.9 Concluding Remarks for Static Models |
|
|
180 | (1) |
|
5.10 Appendix: Derivation of Fabens Transformation |
|
|
181 | (1) |
|
5.11 Appendix: Reparameterization of Beverton-Holt |
|
|
182 | (3) |
|
|
185 | (68) |
|
|
185 | (6) |
|
6.1.1 Types of Uncertainty |
|
|
185 | (3) |
|
|
188 | (3) |
|
|
191 | (1) |
|
6.2.1 Empirical Probability Density Distributions |
|
|
191 | (1) |
|
6.3 A Simple Bootstrap Example |
|
|
192 | (3) |
|
6.4 Bootstrapping Time-Series Data |
|
|
195 | (5) |
|
6.4.1 Parameter Correlation |
|
|
199 | (1) |
|
|
200 | (9) |
|
6.5.1 Uncertainty about the Model Outputs |
|
|
203 | (1) |
|
6.5.2 Sampling from a Multivariate Normal Distribution |
|
|
204 | (5) |
|
|
209 | (10) |
|
6.6.1 Likelihood Ratio-Based Confidence Intervals |
|
|
212 | (2) |
|
6.6.2 Ve Log-Likelihoods or Likelihoods |
|
|
214 | (2) |
|
6.6.3 Percentile Likelihood Profiles for Model Outputs |
|
|
216 | (3) |
|
6.7 Bayesian Posterior Distributions |
|
|
219 | (17) |
|
6.7.1 Generating the Markov Chain |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
6.7.4 Convergence to the Stationary Distribution |
|
|
223 | (1) |
|
6.7.5 The Jumping Distribution |
|
|
224 | (1) |
|
6.7.6 Application of MCMC to the Example |
|
|
225 | (1) |
|
6.7.7 Markov Chain Monte Carlo |
|
|
225 | (3) |
|
6.7.8 A First Example of an MCMC |
|
|
228 | (7) |
|
6.7.9 Marginal Distributions |
|
|
235 | (1) |
|
|
236 | (15) |
|
6.8.1 Addressing Vectors and Matrices |
|
|
239 | (1) |
|
6.8.2 Replacement for simpspm() |
|
|
240 | (3) |
|
6.8.3 Multiple Independent Chains |
|
|
243 | (4) |
|
6.8.4 Replicates Required to Avoid Serial Correlation |
|
|
247 | (4) |
|
|
251 | (2) |
|
7 Surplus Production Models |
|
|
253 | (70) |
|
|
253 | (6) |
|
|
254 | (1) |
|
7.1.2 The Need for Contrast |
|
|
254 | (1) |
|
7.1.3 When Are Catch-Rates Informative? |
|
|
255 | (4) |
|
|
259 | (8) |
|
7.2.1 Production Functions |
|
|
261 | (2) |
|
|
263 | (1) |
|
7.2.3 Sum of Squared Residuals |
|
|
264 | (1) |
|
7.2.4 Estimating Management Statistics |
|
|
265 | (1) |
|
7.2.5 The Trouble with Equilibria |
|
|
266 | (1) |
|
|
267 | (12) |
|
7.3.1 A Possible Workflow for Stock Assessment |
|
|
268 | (6) |
|
7.3.2 Is the Analysis Robust? |
|
|
274 | (3) |
|
7.3.3 Using Different Data |
|
|
277 | (2) |
|
|
279 | (29) |
|
7.4.1 Likelihood Profiles |
|
|
280 | (3) |
|
7.4.2 Bootstrap Confidence Intervals |
|
|
283 | (7) |
|
7.4.3 Parameter Correlations |
|
|
290 | (1) |
|
|
290 | (7) |
|
7.4.5 Sometimes Asymptotic Errors Work |
|
|
297 | (2) |
|
7.4.6 Bayesian Posteriors |
|
|
299 | (9) |
|
|
308 | (2) |
|
|
308 | (1) |
|
|
309 | (1) |
|
7.6 Risk Assessment Projections |
|
|
310 | (9) |
|
7.6.1 Deterministic Projections |
|
|
310 | (3) |
|
7.6.2 Accounting for Uncertainty |
|
|
313 | (1) |
|
7.6.3 Using Asymptotic Errors |
|
|
314 | (2) |
|
7.6.4 Using Bootstrap Parameter Vectors |
|
|
316 | (1) |
|
7.6.5 Using Samples from a Bayesian Posterior |
|
|
316 | (3) |
|
|
319 | (2) |
|
7.8 Appendix: The Use of Repp to Replace simpspm |
|
|
321 | (2) |
References |
|
323 | (12) |
Index |
|
335 | |