Muutke küpsiste eelistusi

E-raamat: Welding Metallurgy and Weldability [Wiley Online]

(The Ohio State Univ, USA)
  • Formaat: 432 pages
  • Ilmumisaeg: 20-Jan-2015
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118960335
  • ISBN-13: 9781118960332
  • Wiley Online
  • Hind: 149,03 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 432 pages
  • Ilmumisaeg: 20-Jan-2015
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118960335
  • ISBN-13: 9781118960332
Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys

Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and failure mechanisms related to microstructure of the weldment. Weldability issues are divided into fabrication and service related failures; early chapters address hot cracking, warm (solid-state) cracking, and cold cracking that occur during initial fabrication, or repair. Guidance on failure analysis is also provided, along with examples of SEM fractography that will aid in determining failure mechanisms. Welding Metallurgy and Weldability examines a number of weldability testing techniques that can be used to quantify susceptibility to various forms of weld cracking. 





Describes the mechanisms of weldability along with methods to improve weldability Includes an introduction to weldability testing and techniques, including strain-to-fracture and Varestraint tests Chapters are illustrated with practical examples based on 30 plus years of experience in the field

Illustrating the weldability aspects of structural materials used in a wide variety of engineering structures, Welding Metallurgy and Weldability provides engineers and students with the information needed to understand the basic concepts of welding metallurgy and to interpret the failures in welded components. 
Preface xiii
Author Biography xvi
1 Introduction
1(8)
1.1 Fabrication-Related Defects
5(1)
1.2 Service-Related Defects
6(1)
1.3 Defect Prevention and Control
7(2)
References
8(1)
2 Welding Metallurgy Principles
9(75)
2.1 Introduction
9(1)
2.2 Regions of a Fusion Weld
10(3)
2.3 Fusion Zone
13(32)
2.3.1 Solidification of Metals
15(1)
2.3.1.1 Solidification Parameters
15(2)
2.3.1.2 Solidification Nucleation
17(2)
2.3.1.3 Solidification Modes
19(3)
2.3.1.4 Interface Stability
22(2)
2.3.2 Macroscopic Aspects of Weld Solidification
24(3)
2.3.2.1 Effect of Travel Speed and Temperature Gradient
27(3)
2.3.3 Microscopic Aspects of Weld Solidification
30(2)
2.3.3.1 Solidification Subgrain Boundaries (SSGB)
32(1)
2.3.3.2 Solidification Grain Boundaries (SGB)
33(1)
2.3.3.3 Migrated Grain Boundaries (MGB)
34(1)
2.3.4 Solute Redistribution
34(1)
2.3.4.1 Macroscopic Solidification
35(2)
2.3.4.2 Microscopic Solidification
37(3)
2.3.5 Examples of Fusion Zone Microstructures
40(3)
2.3.6 Transition Zone (TZ)
43(2)
2.4 Unmixed Zone (UMZ)
45(3)
2.5 Partially Melted Zone (PMZ)
48(12)
2.5.1 Penetration Mechanism
50(3)
2.5.2 Segregation Mechanism
53(3)
2.5.2.1 Gibbsian Segregation
56(1)
2.5.2.2 Grain Boundary Sweeping
56(1)
2.5.2.3 Pipeline Diffusion
57(1)
2.5.2.4 Grain Boundary Wetting
58(1)
2.5.3 Examples of PMZ formation
58(2)
2.6 Heat Affected Zone (HAZ)
60(10)
2.6.1 Recrystallization and Grain Growth
61(2)
2.6.2 Allotropic Phase Transformations
63(3)
2.6.3 Precipitation Reactions
66(3)
2.6.4 Examples of HAZ Microstructure
69(1)
2.7 Solid-State Welding
70(14)
2.7.1 Friction Stir Welding
72(4)
2.7.2 Diffusion Welding
76(1)
2.7.3 Explosion Welding
77(3)
2.7.4 Ultrasonic Welding
80(1)
References
81(3)
3 Hot Cracking
84(46)
3.1 Introduction
84(1)
3.2 Weld Solidification Cracking
85(34)
3.2.1 Theories of Weld Solidification Cracking
85(1)
3.2.1.1 Shrinkage-Brittleness Theory
86(1)
3.2.1.2 Strain Theory
87(1)
3.2.1.3 Generalized Theory
88(1)
3.2.14 Modified Generalized Theory
89(1)
3.2.1.5 Technological Strength Theory
90(1)
3.2.1.6 Commentary on Solidification Cracking Theories
91(3)
3.2.2 Predictions of Elemental Effects
94(3)
3.2.3 The BTR and Solidification Cracking Temperature Range
97(5)
3.2.4 Factors that Influence Weld Solidification Cracking
102(1)
3.2.4.1 Composition Control
102(7)
3.2.4.2 Grain Boundary Liquid Films
109(1)
3.2.4.3 Effect of Restraint
110(2)
3.2.5 Identifying Weld Solidification Cracking
112(4)
3.2.6 Preventing Weld Solidification Cracking
116(3)
3.3 Liquation Cracking
119(11)
3.3.1 HAZ Liquation Cracking
119(3)
3.3.2 Weld Metal Liquation Cracking
122(1)
3.3.3 Variables that Influence Susceptibility to Liquation Cracking
123(1)
3.3.3.1 Composition
123(1)
3.3.3.2 Grain Size
124(1)
3.3.3.3 Base Metal Heat Treatment
125(1)
3.3.3.4 Weld Heat Input and Filler Metal Selection
125(1)
3.3.4 Identifying HAZ and Weld Metal Liquation Cracks
126(1)
3.3.5 Preventing Liquation Cracking
127(1)
References
128(2)
4 Solid-State Cracking
130(83)
4.1 Introduction
130(1)
4.2 Ductility-Dip Cracking
130(19)
4.2.1 Proposed Mechanisms
133(6)
4.2.2 Summary of Factors That Influence DDC
139(4)
4.2.3 Quantifying Ductility-Dip Cracking
143(2)
4.2.4 Identifying Ductility-Dip Cracks
145(2)
4.2.5 Preventing DDC
147(2)
4.3 Reheat Cracking
149(19)
4.3.1 Reheat Cracking in Low-Alloy Steels
150(5)
4.3.2 Reheat Cracking in Stainless Steels
155(3)
4.3.3 Underclad Cracking
158(2)
4.3.4 Relaxation Cracking
160(1)
4.3.5 Identifying Reheat Cracking
161(2)
4.3.6 Quantifying Reheat Cracking Susceptibility
163(3)
4.3.7 Preventing Reheat Cracking
166(2)
4.4 Strain-Age Cracking
168(22)
4.4.1 Mechanism for Strain-age Cracking
171(7)
4.4.2 Factors That Influence SAC Susceptibility
178(1)
4.4.2.1 Composition
178(1)
4.4.2.2 Grain Size
179(1)
4.4.2.3 Residual Stress and Restraint
179(1)
4.4.2.4 Welding Procedure
180(1)
4.4.2.5 Effect of PWHT
181(1)
4.4.3 Quantifying Susceptibility to Strain-age Cracking
182(7)
4.4.4 Identifying Strain-age Cracking
189(1)
4.4.5 Preventing Strain-age Cracking
189(1)
4.5 Lamellar Cracking
190(11)
4.5.1 Mechanism of Lamellar Cracking
191(4)
4.5.2 Quantifying Lamellar Cracking
195(2)
4.5.3 Identifying Lamellar Cracking
197(1)
4.5.4 Preventing Lamellar Cracking
198(3)
4.6 Copper Contamination Cracking
201(12)
4.6.1 Mechanism for Copper Contamination Cracking
201(2)
4.6.2 Quantifying Copper Contamination Cracking
203(2)
4.6.3 Identifying Copper Contamination Cracking
205(1)
4.6.4 Preventing Copper Contamination Cracking
205(2)
References
207(6)
5 Hydrogen-Induced Cracking
213(50)
5.1 Introduction
213(1)
5.2 Hydrogen Embrittlement Theories
214(7)
5.2.1 Planar Pressure Theory
216(1)
5.2.2 Surface Adsorption Theory
217(1)
5.2.3 Decohesion Theory
217(1)
5.2.4 Hydrogen-Enhanced Localized Plasticity Theory
218(1)
5.2.5 Beachem's Stress Intensity Model
219(2)
5.3 Factors That Influence HIC
221(9)
5.3.1 Hydrogen in Welds
221(3)
5.3.2 Effect of Microstructure
224(4)
5.3.3 Restraint
228(2)
5.3.4 Temperature
230(1)
5.4 Quantifying Susceptibility to HIC
230(15)
5.4.1 Jominy End Quench Method
231(3)
5.4.2 Controlled Thermal Severity Test
234(1)
5.4.3 The Y-Groove (Tekken) Test
235(1)
5.4.4 Gapped Bead-on-Plate Test
236(1)
5.4.5 The Implant Test
237(6)
5.4.6 Tensile Restraint Cracking Test
243(1)
5.4.7 Augmented Strain Cracking Test
244(1)
5.5 Identifying HIC
245(2)
5.6 Preventing HIC
247(16)
5.6.1 CE Method
251(3)
5.6.2 AWS Method
254(5)
References
259(4)
6 Corrosion
263(25)
6.1 Introduction
263(1)
6.2 Forms of Corrosion
264(18)
6.2.1 General Corrosion
264(1)
6.2.2 Galvanic Corrosion
265(2)
6.2.3 Crevice Corrosion
267(1)
6.2.4 Selective Leaching
268(1)
6.2.5 Erosion Corrosion
268(1)
6.2.6 Pitting
268(3)
6.2.7 Intergranular Corrosion
271(4)
6.2.7.1 Preventing Sensitization
275(1)
6.2.7.2 Knifeline Attack
276(1)
6.2.7.3 Low-Temperature Sensitization
276(1)
6.2.8 Stress Corrosion Cracking
277(3)
6.2.9 Microbiologically Induced Corrosion
280(2)
6.3 Corrosion Testing
282(6)
6.3.1 Atmospheric Corrosion Tests
282(1)
6.3.2 Immersion Tests
282(2)
6.3.3 Electrochemical Tests
284(2)
References
286(2)
7 Fracture and Fatigue
288(23)
7.1 Introduction
288(2)
7.2 Fracture
290(3)
7.3 Quantifying Fracture Toughness
293(4)
7.4 Fatigue
297(8)
7.5 Quantifying Fatigue Behavior
305(1)
7.6 Identifying Fatigue Cracking
306(3)
7.6.1 Beach Marks
307(1)
7.6.2 River Lines
307(1)
7.6.3 Fatigue Striations
307(2)
7.7 Avoiding Fatigue Failures
309(2)
References
310(1)
8 Failure Analysis
311(32)
8.1 Introduction
311(1)
8.2 Fractography
312(21)
8.2.1 History of Fractography
312(1)
8.2.2 The SEM
313(2)
8.2.3 Fracture Modes
315(5)
8.2.4 Fractography of Weld Failures
320(1)
8.2.4.1 Solidification Cracking
320(3)
8.2.4.2 Liquation Cracking
323(3)
8.2.4.3 Ductility-Dip Cracking
326(1)
8.2.4.4 Reheat Cracking
326(5)
8.2.4.5 Strain-Age Cracking
331(1)
8.2.4.6 Hydrogen-Induced Cracking
332(1)
8.3 An Engineer's Guide to Failure Analysis
333(10)
8.3.1 Site Visit
334(1)
8.3.2 Collect Background Information
335(1)
8.3.3 Sample Removal and Testing Protocol
336(1)
8.3.4 Sample Removal, Cleaning, and Storage
336(1)
8.3.5 Chemical Analysis
336(1)
8.3.6 Macroscopic Analysis
337(1)
8.3.7 Selection of Samples for Microscopic Analysis
338(1)
8.3.8 Selection of Analytical Techniques
338(1)
8.3.9 Mechanical Testing
339(1)
8.3.10 Simulative Testing
339(1)
8.3.11 Nondestructive Evaluation Techniques
340(1)
8.3.12 Structural Integrity Assessment
340(1)
8.3.13 Consultation with Experts
340(1)
8.3.14 Final Reporting
340(1)
8.3.15 Expert Testimony in Support of Litigation
341(1)
References
342(1)
9 Weldability Testing
343(29)
9.1 Introduction
343(1)
9.2 Types of Weldability Test Techniques
344(1)
9.3 The Varestraint Test
345(9)
9.3.1 Technique for Quantifying Weld Solidification Cracking
346(4)
9.3.2 Technique for Quantifying HAZ Liquation Cracking
350(4)
9.4 The Cast Pin Tear Test
354(3)
9.5 The Hot Ductility Test
357(5)
9.6 The Strain-to-Fracture Test
362(1)
9.7 Reheat Cracking Test
363(3)
9.8 Implant Test for HAZ HIC
366(1)
9.9 Gapped Bead-on-Plate Test for Weld Metal HIC
367(3)
9.10 Other Weldability Tests
370(2)
References
371(1)
Appendix A 372(2)
Appendix B 374(9)
Appendix C 383(5)
Appendix D 388(8)
Index 396
John C. Lippold received his BS, MS, and PhD degrees in Materials Engineering from Rensselaer Polytechnic Institute. Upon completion of his formal education, Dr. Lippold worked for seven years at Sandia National Laboratories, Livermore, CA, as a member of the technical staff, specializing in stainless steel and high alloy weldability. From 1985 to 1995, Dr. Lippold worked for Edison Welding Institute. From 1995 to the present, he has been on the faculty of the Welding Engineering program at The Ohio State University and was recently named a College of Engineering Distinguished Faculty member.