Preface |
|
xiii | |
Author Biography |
|
xvi | |
|
|
1 | (8) |
|
1.1 Fabrication-Related Defects |
|
|
5 | (1) |
|
1.2 Service-Related Defects |
|
|
6 | (1) |
|
1.3 Defect Prevention and Control |
|
|
7 | (2) |
|
|
8 | (1) |
|
2 Welding Metallurgy Principles |
|
|
9 | (75) |
|
|
9 | (1) |
|
2.2 Regions of a Fusion Weld |
|
|
10 | (3) |
|
|
13 | (32) |
|
2.3.1 Solidification of Metals |
|
|
15 | (1) |
|
2.3.1.1 Solidification Parameters |
|
|
15 | (2) |
|
2.3.1.2 Solidification Nucleation |
|
|
17 | (2) |
|
2.3.1.3 Solidification Modes |
|
|
19 | (3) |
|
2.3.1.4 Interface Stability |
|
|
22 | (2) |
|
2.3.2 Macroscopic Aspects of Weld Solidification |
|
|
24 | (3) |
|
2.3.2.1 Effect of Travel Speed and Temperature Gradient |
|
|
27 | (3) |
|
2.3.3 Microscopic Aspects of Weld Solidification |
|
|
30 | (2) |
|
2.3.3.1 Solidification Subgrain Boundaries (SSGB) |
|
|
32 | (1) |
|
2.3.3.2 Solidification Grain Boundaries (SGB) |
|
|
33 | (1) |
|
2.3.3.3 Migrated Grain Boundaries (MGB) |
|
|
34 | (1) |
|
2.3.4 Solute Redistribution |
|
|
34 | (1) |
|
2.3.4.1 Macroscopic Solidification |
|
|
35 | (2) |
|
2.3.4.2 Microscopic Solidification |
|
|
37 | (3) |
|
2.3.5 Examples of Fusion Zone Microstructures |
|
|
40 | (3) |
|
2.3.6 Transition Zone (TZ) |
|
|
43 | (2) |
|
|
45 | (3) |
|
2.5 Partially Melted Zone (PMZ) |
|
|
48 | (12) |
|
2.5.1 Penetration Mechanism |
|
|
50 | (3) |
|
2.5.2 Segregation Mechanism |
|
|
53 | (3) |
|
2.5.2.1 Gibbsian Segregation |
|
|
56 | (1) |
|
2.5.2.2 Grain Boundary Sweeping |
|
|
56 | (1) |
|
2.5.2.3 Pipeline Diffusion |
|
|
57 | (1) |
|
2.5.2.4 Grain Boundary Wetting |
|
|
58 | (1) |
|
2.5.3 Examples of PMZ formation |
|
|
58 | (2) |
|
2.6 Heat Affected Zone (HAZ) |
|
|
60 | (10) |
|
2.6.1 Recrystallization and Grain Growth |
|
|
61 | (2) |
|
2.6.2 Allotropic Phase Transformations |
|
|
63 | (3) |
|
2.6.3 Precipitation Reactions |
|
|
66 | (3) |
|
2.6.4 Examples of HAZ Microstructure |
|
|
69 | (1) |
|
|
70 | (14) |
|
2.7.1 Friction Stir Welding |
|
|
72 | (4) |
|
|
76 | (1) |
|
|
77 | (3) |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (46) |
|
|
84 | (1) |
|
3.2 Weld Solidification Cracking |
|
|
85 | (34) |
|
3.2.1 Theories of Weld Solidification Cracking |
|
|
85 | (1) |
|
3.2.1.1 Shrinkage-Brittleness Theory |
|
|
86 | (1) |
|
|
87 | (1) |
|
3.2.1.3 Generalized Theory |
|
|
88 | (1) |
|
3.2.14 Modified Generalized Theory |
|
|
89 | (1) |
|
3.2.1.5 Technological Strength Theory |
|
|
90 | (1) |
|
3.2.1.6 Commentary on Solidification Cracking Theories |
|
|
91 | (3) |
|
3.2.2 Predictions of Elemental Effects |
|
|
94 | (3) |
|
3.2.3 The BTR and Solidification Cracking Temperature Range |
|
|
97 | (5) |
|
3.2.4 Factors that Influence Weld Solidification Cracking |
|
|
102 | (1) |
|
3.2.4.1 Composition Control |
|
|
102 | (7) |
|
3.2.4.2 Grain Boundary Liquid Films |
|
|
109 | (1) |
|
3.2.4.3 Effect of Restraint |
|
|
110 | (2) |
|
3.2.5 Identifying Weld Solidification Cracking |
|
|
112 | (4) |
|
3.2.6 Preventing Weld Solidification Cracking |
|
|
116 | (3) |
|
|
119 | (11) |
|
3.3.1 HAZ Liquation Cracking |
|
|
119 | (3) |
|
3.3.2 Weld Metal Liquation Cracking |
|
|
122 | (1) |
|
3.3.3 Variables that Influence Susceptibility to Liquation Cracking |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
3.3.3.3 Base Metal Heat Treatment |
|
|
125 | (1) |
|
3.3.3.4 Weld Heat Input and Filler Metal Selection |
|
|
125 | (1) |
|
3.3.4 Identifying HAZ and Weld Metal Liquation Cracks |
|
|
126 | (1) |
|
3.3.5 Preventing Liquation Cracking |
|
|
127 | (1) |
|
|
128 | (2) |
|
|
130 | (83) |
|
|
130 | (1) |
|
4.2 Ductility-Dip Cracking |
|
|
130 | (19) |
|
4.2.1 Proposed Mechanisms |
|
|
133 | (6) |
|
4.2.2 Summary of Factors That Influence DDC |
|
|
139 | (4) |
|
4.2.3 Quantifying Ductility-Dip Cracking |
|
|
143 | (2) |
|
4.2.4 Identifying Ductility-Dip Cracks |
|
|
145 | (2) |
|
|
147 | (2) |
|
|
149 | (19) |
|
4.3.1 Reheat Cracking in Low-Alloy Steels |
|
|
150 | (5) |
|
4.3.2 Reheat Cracking in Stainless Steels |
|
|
155 | (3) |
|
|
158 | (2) |
|
4.3.4 Relaxation Cracking |
|
|
160 | (1) |
|
4.3.5 Identifying Reheat Cracking |
|
|
161 | (2) |
|
4.3.6 Quantifying Reheat Cracking Susceptibility |
|
|
163 | (3) |
|
4.3.7 Preventing Reheat Cracking |
|
|
166 | (2) |
|
|
168 | (22) |
|
4.4.1 Mechanism for Strain-age Cracking |
|
|
171 | (7) |
|
4.4.2 Factors That Influence SAC Susceptibility |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
4.4.2.3 Residual Stress and Restraint |
|
|
179 | (1) |
|
4.4.2.4 Welding Procedure |
|
|
180 | (1) |
|
|
181 | (1) |
|
4.4.3 Quantifying Susceptibility to Strain-age Cracking |
|
|
182 | (7) |
|
4.4.4 Identifying Strain-age Cracking |
|
|
189 | (1) |
|
4.4.5 Preventing Strain-age Cracking |
|
|
189 | (1) |
|
|
190 | (11) |
|
4.5.1 Mechanism of Lamellar Cracking |
|
|
191 | (4) |
|
4.5.2 Quantifying Lamellar Cracking |
|
|
195 | (2) |
|
4.5.3 Identifying Lamellar Cracking |
|
|
197 | (1) |
|
4.5.4 Preventing Lamellar Cracking |
|
|
198 | (3) |
|
4.6 Copper Contamination Cracking |
|
|
201 | (12) |
|
4.6.1 Mechanism for Copper Contamination Cracking |
|
|
201 | (2) |
|
4.6.2 Quantifying Copper Contamination Cracking |
|
|
203 | (2) |
|
4.6.3 Identifying Copper Contamination Cracking |
|
|
205 | (1) |
|
4.6.4 Preventing Copper Contamination Cracking |
|
|
205 | (2) |
|
|
207 | (6) |
|
5 Hydrogen-Induced Cracking |
|
|
213 | (50) |
|
|
213 | (1) |
|
5.2 Hydrogen Embrittlement Theories |
|
|
214 | (7) |
|
5.2.1 Planar Pressure Theory |
|
|
216 | (1) |
|
5.2.2 Surface Adsorption Theory |
|
|
217 | (1) |
|
|
217 | (1) |
|
5.2.4 Hydrogen-Enhanced Localized Plasticity Theory |
|
|
218 | (1) |
|
5.2.5 Beachem's Stress Intensity Model |
|
|
219 | (2) |
|
5.3 Factors That Influence HIC |
|
|
221 | (9) |
|
|
221 | (3) |
|
5.3.2 Effect of Microstructure |
|
|
224 | (4) |
|
|
228 | (2) |
|
|
230 | (1) |
|
5.4 Quantifying Susceptibility to HIC |
|
|
230 | (15) |
|
5.4.1 Jominy End Quench Method |
|
|
231 | (3) |
|
5.4.2 Controlled Thermal Severity Test |
|
|
234 | (1) |
|
5.4.3 The Y-Groove (Tekken) Test |
|
|
235 | (1) |
|
5.4.4 Gapped Bead-on-Plate Test |
|
|
236 | (1) |
|
|
237 | (6) |
|
5.4.6 Tensile Restraint Cracking Test |
|
|
243 | (1) |
|
5.4.7 Augmented Strain Cracking Test |
|
|
244 | (1) |
|
|
245 | (2) |
|
|
247 | (16) |
|
|
251 | (3) |
|
|
254 | (5) |
|
|
259 | (4) |
|
|
263 | (25) |
|
|
263 | (1) |
|
|
264 | (18) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
268 | (3) |
|
6.2.7 Intergranular Corrosion |
|
|
271 | (4) |
|
6.2.7.1 Preventing Sensitization |
|
|
275 | (1) |
|
|
276 | (1) |
|
6.2.7.3 Low-Temperature Sensitization |
|
|
276 | (1) |
|
6.2.8 Stress Corrosion Cracking |
|
|
277 | (3) |
|
6.2.9 Microbiologically Induced Corrosion |
|
|
280 | (2) |
|
|
282 | (6) |
|
6.3.1 Atmospheric Corrosion Tests |
|
|
282 | (1) |
|
|
282 | (2) |
|
6.3.3 Electrochemical Tests |
|
|
284 | (2) |
|
|
286 | (2) |
|
|
288 | (23) |
|
|
288 | (2) |
|
|
290 | (3) |
|
7.3 Quantifying Fracture Toughness |
|
|
293 | (4) |
|
|
297 | (8) |
|
7.5 Quantifying Fatigue Behavior |
|
|
305 | (1) |
|
7.6 Identifying Fatigue Cracking |
|
|
306 | (3) |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
307 | (2) |
|
7.7 Avoiding Fatigue Failures |
|
|
309 | (2) |
|
|
310 | (1) |
|
|
311 | (32) |
|
|
311 | (1) |
|
|
312 | (21) |
|
8.2.1 History of Fractography |
|
|
312 | (1) |
|
|
313 | (2) |
|
|
315 | (5) |
|
8.2.4 Fractography of Weld Failures |
|
|
320 | (1) |
|
8.2.4.1 Solidification Cracking |
|
|
320 | (3) |
|
8.2.4.2 Liquation Cracking |
|
|
323 | (3) |
|
8.2.4.3 Ductility-Dip Cracking |
|
|
326 | (1) |
|
|
326 | (5) |
|
8.2.4.5 Strain-Age Cracking |
|
|
331 | (1) |
|
8.2.4.6 Hydrogen-Induced Cracking |
|
|
332 | (1) |
|
8.3 An Engineer's Guide to Failure Analysis |
|
|
333 | (10) |
|
|
334 | (1) |
|
8.3.2 Collect Background Information |
|
|
335 | (1) |
|
8.3.3 Sample Removal and Testing Protocol |
|
|
336 | (1) |
|
8.3.4 Sample Removal, Cleaning, and Storage |
|
|
336 | (1) |
|
|
336 | (1) |
|
8.3.6 Macroscopic Analysis |
|
|
337 | (1) |
|
8.3.7 Selection of Samples for Microscopic Analysis |
|
|
338 | (1) |
|
8.3.8 Selection of Analytical Techniques |
|
|
338 | (1) |
|
|
339 | (1) |
|
8.3.10 Simulative Testing |
|
|
339 | (1) |
|
8.3.11 Nondestructive Evaluation Techniques |
|
|
340 | (1) |
|
8.3.12 Structural Integrity Assessment |
|
|
340 | (1) |
|
8.3.13 Consultation with Experts |
|
|
340 | (1) |
|
|
340 | (1) |
|
8.3.15 Expert Testimony in Support of Litigation |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (29) |
|
|
343 | (1) |
|
9.2 Types of Weldability Test Techniques |
|
|
344 | (1) |
|
|
345 | (9) |
|
9.3.1 Technique for Quantifying Weld Solidification Cracking |
|
|
346 | (4) |
|
9.3.2 Technique for Quantifying HAZ Liquation Cracking |
|
|
350 | (4) |
|
9.4 The Cast Pin Tear Test |
|
|
354 | (3) |
|
9.5 The Hot Ductility Test |
|
|
357 | (5) |
|
9.6 The Strain-to-Fracture Test |
|
|
362 | (1) |
|
|
363 | (3) |
|
9.8 Implant Test for HAZ HIC |
|
|
366 | (1) |
|
9.9 Gapped Bead-on-Plate Test for Weld Metal HIC |
|
|
367 | (3) |
|
9.10 Other Weldability Tests |
|
|
370 | (2) |
|
|
371 | (1) |
Appendix A |
|
372 | (2) |
Appendix B |
|
374 | (9) |
Appendix C |
|
383 | (5) |
Appendix D |
|
388 | (8) |
Index |
|
396 | |