List of Contributors |
|
xiii | |
Preface |
|
xvii | |
Abbreviations |
|
xxiii | |
1 What is Blockchain Radio Access Network? |
|
1 | (26) |
|
|
|
|
|
|
|
1 | (2) |
|
|
3 | (4) |
|
|
3 | (3) |
|
1.2.2 Consensus Mechanism |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (3) |
|
|
7 | (1) |
|
1.3.2 Modeling of Hash Trials |
|
|
7 | (3) |
|
|
10 | (1) |
|
|
10 | (2) |
|
1.5 Latency Analysis of B-RAN |
|
|
12 | (6) |
|
1.5.1 Steady-State Analysis |
|
|
12 | (4) |
|
1.5.2 Average Service Latency |
|
|
16 | (2) |
|
1.6 Security Considerations |
|
|
18 | (2) |
|
1.6.1 Alternative History Attack |
|
|
18 | (1) |
|
1.6.2 Probability of a Successful Attack |
|
|
19 | (1) |
|
1.7 Latency-Security Trade-off |
|
|
20 | (2) |
|
1.8 Conclusions and Future Works |
|
|
22 | (1) |
|
1.8.1 Network Effect and Congest Effect |
|
|
22 | (1) |
|
|
22 | (1) |
|
1.8.3 Decentralization and Centralization |
|
|
22 | (1) |
|
1.8.4 Beyond Bitcoin Blockchain |
|
|
22 | (1) |
|
|
23 | (4) |
2 Consensus Algorithm Analysis in Blockchain: PoW and Raft |
|
27 | (46) |
|
|
|
|
|
27 | (3) |
|
2.2 Mining Strategy Analysis for the PoW Consensus-Based Blockchain |
|
|
30 | (22) |
|
2.2.1 Blockchain Preliminaries |
|
|
30 | (1) |
|
2.2.2 Proof of Work and Mining |
|
|
30 | (1) |
|
2.2.3 Honest Mining Strategy |
|
|
31 | (1) |
|
2.2.4 PoW Blockchain Mining Model |
|
|
32 | (9) |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.2.4.3 Transition and Reward |
|
|
34 | (5) |
|
2.2.4.4 Objective Function |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
2.2.4.7 Lead Stubborn Mining |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (3) |
|
2.2.5.1 Preliminaries for Original Reinforcement Learning Algorithm |
|
|
41 | (1) |
|
2.2.5.2 New Reinforcement Learning Algorithm for Mining |
|
|
42 | (2) |
|
2.2.6 Performance Evaluations |
|
|
44 | (8) |
|
2.3 Performance Analysis of the Raft Consensus Algorithm |
|
|
52 | (17) |
|
2.3.1 Review of Raft Algorithm |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (2) |
|
2.3.4 Network Split Probability |
|
|
55 | (2) |
|
2.3.5 Average Number of Replies |
|
|
57 | (1) |
|
2.3.6 Expected Number of Received Heartbeats for a Follower |
|
|
57 | (1) |
|
2.3.7 Time to Transition to Candidate |
|
|
58 | (1) |
|
2.3.8 Time to Elect a New Leader |
|
|
59 | (1) |
|
|
60 | (7) |
|
|
67 | (6) |
|
|
67 | (1) |
|
2.3.10.2 System Availability and Consensus Efficiency |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (3) |
3 A Low Communication Complexity Double-layer PBFT Consensus |
|
73 | (20) |
|
|
|
|
|
|
|
73 | (6) |
|
3.1.1 PBFT Applied to Blockchain |
|
|
74 | (1) |
|
|
74 | (2) |
|
3.1.2.1 State Machine Replication |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
3.1.3 Byzantine Generals Problem |
|
|
76 | (1) |
|
3.1.4 Byzantine Consensus Protocols |
|
|
76 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (2) |
|
|
78 | (1) |
|
3.1.6 Chapter Organizations |
|
|
78 | (1) |
|
3.2 Double-Layer PBFT-Based Protocol |
|
|
79 | (5) |
|
|
79 | (3) |
|
|
79 | (2) |
|
3.2.1.2 First-Layer Protocol |
|
|
81 | (1) |
|
3.2.1.3 Second-Layer Protocol |
|
|
81 | (1) |
|
3.2.2 Faulty Primary Elimination |
|
|
82 | (2) |
|
3.2.2.1 Faulty Primary Detection |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
3.3 Communication Reduction |
|
|
84 | (1) |
|
3.3.1 Operation Synchronization |
|
|
85 | (1) |
|
3.3.2 Safety and Liveness |
|
|
85 | (1) |
|
3.4 Communication Complexity of Double-Layer PBFT |
|
|
85 | (1) |
|
3.5 Security Threshold Analysis |
|
|
86 | (4) |
|
3.5.1 Faulty Probability Determined |
|
|
87 | (2) |
|
3.5.2 Faulty Number Determined |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (3) |
4 Blockchain-Driven Internet of Things |
|
93 | (24) |
|
|
|
|
|
93 | (3) |
|
4.1.1 Challenges and Issues in IoT |
|
|
93 | (1) |
|
4.1.2 Advantages of Blockchain for IoT |
|
|
94 | (1) |
|
4.1.3 Integration of IoT and Blockchain |
|
|
94 | (2) |
|
4.2 Consensus Mechanism in Blockchain |
|
|
96 | (6) |
|
|
96 | (1) |
|
|
97 | (1) |
|
4.2.3 Limitations of PoW and PoS for IoT |
|
|
98 | (1) |
|
4.2.3.1 Resource Consumption |
|
|
98 | (1) |
|
|
98 | (1) |
|
4.2.3.3 Throughput Limitation |
|
|
98 | (1) |
|
4.2.3.4 Confirmation Delay |
|
|
98 | (1) |
|
|
98 | (2) |
|
|
100 | (2) |
|
|
101 | (1) |
|
|
102 | (1) |
|
4.3 Applications of Blockchain jn IoT |
|
|
102 | (9) |
|
|
102 | (4) |
|
|
102 | (1) |
|
4.3.1.2 Modified Blockchain |
|
|
103 | (1) |
|
4.3.1.3 Integrated Architecture |
|
|
104 | (1) |
|
4.3.1.4 Security Analysis |
|
|
105 | (1) |
|
|
106 | (5) |
|
|
106 | (1) |
|
4.3.2.2 Smart Contract System |
|
|
107 | (2) |
|
4.3.2.3 Main Functions of the Framework |
|
|
109 | (1) |
|
|
110 | (1) |
|
4.4 Issues and Challenges of Blockchain in IoT |
|
|
111 | (1) |
|
4.4.1 Resource Constraints |
|
|
111 | (1) |
|
4.4.2 Security Vulnerability |
|
|
111 | (1) |
|
|
112 | (1) |
|
4.4.4 Incentive Mechanism |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
112 | (5) |
5 Hyperledger Blockchain-Based Distributed Marketplaces for 5G Networks |
|
117 | (20) |
|
|
|
|
|
117 | (1) |
|
5.2 Marketplaces in Telecommunications |
|
|
118 | (5) |
|
5.2.1 Wireless Spectrum Allocation |
|
|
119 | (1) |
|
|
119 | (1) |
|
5.2.3 Passive optical networks (PON) Sharing |
|
|
120 | (1) |
|
5.2.4 Enterprise Blockchain: Hyperledger Fabric |
|
|
121 | (2) |
|
|
122 | (1) |
|
|
122 | (1) |
|
5.2.4.3 Consensus Protocol |
|
|
122 | (1) |
|
|
122 | (1) |
|
5.2.4.5 Smart Contracts (chaincodes) |
|
|
123 | (1) |
|
|
123 | (1) |
|
5.3 Distributed Resource Sharing Market |
|
|
123 | (3) |
|
5.3.1 Market Mechanism (Auction) |
|
|
125 | (1) |
|
|
125 | (1) |
|
5.4 Experimental Design and Results |
|
|
126 | (7) |
|
5.4.1 Experimental Blockchain Deployment |
|
|
127 | (1) |
|
5.4.1.1 Cloud Infrastructure |
|
|
127 | (1) |
|
5.4.1.2 Container Orchestration: Docker Swarm |
|
|
127 | (1) |
|
5.4.2 Blockchain Performance Evaluation |
|
|
127 | (1) |
|
5.4.3 Benchmark Apparatus |
|
|
128 | (3) |
|
5.4.3.1 Hyperledger Caliper |
|
|
130 | (1) |
|
5.4.3.2 Data Collection: Prometheus Monitor |
|
|
130 | (1) |
|
5.4.4 Experimental Results |
|
|
131 | (8) |
|
5.4.4.1 Maximum Transaction Throughput |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (2) |
|
|
133 | (1) |
|
|
133 | (4) |
6 Blockchain for Spectrum Management in 6G Networks |
|
137 | (24) |
|
|
|
|
|
|
137 | (2) |
|
|
139 | (4) |
|
6.2.1 Rise of Micro-operators |
|
|
139 | (1) |
|
6.2.2 Case for Novel Spectrum Sharing Models |
|
|
140 | (3) |
|
6.2.2.1 Blockchain for Spectrum Sharing |
|
|
141 | (1) |
|
6.2.2.2 Blockchain in 6G Networks |
|
|
142 | (1) |
|
6.3 Architecture of an Integrated SDN and Blockchain Model |
|
|
143 | (6) |
|
6.3.1 SDN Platform Design |
|
|
143 | (1) |
|
6.3.2 Blockchain Network Layer Design |
|
|
144 | (2) |
|
6.3.3 Network Operation and Spectrum Management |
|
|
146 | (3) |
|
|
149 | (3) |
|
|
152 | (4) |
|
6.5.1 Radio Access Network and Throughput |
|
|
152 | (2) |
|
6.5.2 Blockchain Performance |
|
|
154 | (1) |
|
6.5.3 Blockchain Scalability Performance |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (4) |
7 Integration of MEC and Blockchain |
|
161 | (18) |
|
|
|
|
|
161 | (1) |
|
|
162 | (4) |
|
7.2.1 Blockchain-Enabled MEC |
|
|
162 | (2) |
|
|
162 | (1) |
|
7.2.1.2 Framework Description |
|
|
162 | (2) |
|
7.2.2 MEC-Based Blockchain |
|
|
164 | (2) |
|
|
164 | (1) |
|
7.2.2.2 Framework Description |
|
|
164 | (2) |
|
|
166 | (8) |
|
7.3.1 Security Federated Learning via MEC-Enabled Blockchain Network |
|
|
166 | (4) |
|
|
166 | (1) |
|
7.3.1.2 Blockchain-Driven Federated Learning |
|
|
167 | (1) |
|
7.3.1.3 Experimental Results |
|
|
167 | (3) |
|
7.3.2 Blockchain-Assisted Secure Authentication for Cross-Domain Industrial IoT |
|
|
170 | (11) |
|
|
170 | (1) |
|
7.3.2.2 Blockchain-Driven Cross-Domain Authentication |
|
|
170 | (2) |
|
7.3.2.3 Experimental Results |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
174 | (5) |
8 Performance Analysis on Wireless Blockchain IoT System |
|
179 | (22) |
|
|
|
|
|
|
|
179 | (2) |
|
|
181 | (3) |
|
8.2.1 Blockchain-Enabled IoT Network Model |
|
|
181 | (2) |
|
8.2.2 Wireless Communication Model |
|
|
183 | (1) |
|
8.3 Performance Analysis in Blockchain-Enabled Wireless IoT Networks |
|
|
184 | (5) |
|
8.3.1 Probability Density Function of SINR |
|
|
185 | (2) |
|
8.3.2 TDP Transmission Successful Rate |
|
|
187 | (2) |
|
8.3.3 Overall Communication Throughput |
|
|
189 | (1) |
|
8.4 Optimal FN Deployment |
|
|
189 | (1) |
|
8.5 Security Performance Analysis |
|
|
190 | (2) |
|
|
190 | (2) |
|
8.5.2 Random Link Attacks |
|
|
192 | (1) |
|
|
192 | (1) |
|
8.6 Numerical Results and Discussion |
|
|
192 | (5) |
|
8.6.1 Simulation Settings |
|
|
193 | (1) |
|
8.6.2 Performance Evaluation without Attacks |
|
|
193 | (4) |
|
|
197 | (1) |
|
|
197 | (4) |
9 Utilizing Blockchain as a Citizen-Utility for Future Smart Grids |
|
201 | (24) |
|
|
|
|
|
|
|
201 | (3) |
|
9.2 DET Using Citizen-Utilities |
|
|
204 | (9) |
|
9.2.1 Prosumer Community Groups |
|
|
204 | (3) |
|
|
205 | (1) |
|
9.2.1.2 Virtual Power Plants (VPP) |
|
|
206 | (1) |
|
9.2.1.3 Vehicular Energy Networks (VEN) |
|
|
206 | (1) |
|
9.2.2 Demand Side Management |
|
|
207 | (4) |
|
9.2.2.1 Energy Efficiency |
|
|
208 | (1) |
|
|
209 | (1) |
|
9.2.2.3 Spinning Reserves |
|
|
210 | (1) |
|
9.2.3 Open Research Challenges |
|
|
211 | (2) |
|
9.2.3.1 Scalability and IoT Overhead Issues |
|
|
211 | (1) |
|
9.2.3.2 Privacy Leakage Issues |
|
|
212 | (1) |
|
9.2.3.3 Standardization and Interoperability Issues |
|
|
212 | (1) |
|
9.3 Improved Citizen-Utilities |
|
|
213 | (7) |
|
9.3.1 Toward Scalable Citizen-Utilities |
|
|
213 | (3) |
|
|
213 | (1) |
|
9.3.1.2 HARB Framework-Based Citizen-Utility |
|
|
214 | (2) |
|
9.3.2 Toward Privacy-Preserving Citizen-Utilities |
|
|
216 | (12) |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (4) |
10 Blockchain-enabled COVID-19 Contact Tracing Solutions |
|
225 | (20) |
|
|
|
|
|
|
|
|
225 | (3) |
|
10.2 Preliminaries of BeepTrace |
|
|
228 | (3) |
|
|
228 | (2) |
|
10.2.1.1 Comprehensive Privacy Protection |
|
|
229 | (1) |
|
10.2.1.2 Performance is Uncompromising |
|
|
229 | (1) |
|
10.2.1.3 Broad Community Participation |
|
|
229 | (1) |
|
10.2.1.4 Inclusiveness and Openness |
|
|
230 | (1) |
|
10.2.2 Two Implementations are Based on Different Matching Protocols |
|
|
230 | (1) |
|
|
231 | (6) |
|
|
231 | (2) |
|
10.3.1.1 Active Mode Workflow |
|
|
231 | (1) |
|
10.3.1.2 Privacy Protection of BeepTrace-Active |
|
|
232 | (1) |
|
|
233 | (4) |
|
10.3.2.1 Two-Chain Architecture and Workflow |
|
|
233 | (2) |
|
10.3.2.2 Privacy Protection in BeepTrace-Passive |
|
|
235 | (2) |
|
10.4 Future Opportunity and Conclusions |
|
|
237 | (4) |
|
10.4.1 Preliminary Approach |
|
|
237 | (1) |
|
|
238 | (2) |
|
10.4.2.1 Network Throughput and Scalability |
|
|
238 | (1) |
|
10.4.2.2 Technology for Elders and Minors |
|
|
239 | (1) |
|
10.4.2.3 Battery Drainage and Storage Optimization |
|
|
240 | (1) |
|
10.4.2.4 Social and Economic Aspects |
|
|
240 | (1) |
|
10.4.3 Concluding Remarks |
|
|
240 | (1) |
|
|
241 | (4) |
11 Blockchain Medical Data Sharing |
|
245 | (24) |
|
|
|
|
|
245 | (21) |
|
|
248 | (1) |
|
11.1.2 Defining Challenges |
|
|
248 | (2) |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
11.1.2.5 Data Interoperability |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (10) |
|
11.1.3.1 Institution-to-Institution Data Sharing |
|
|
251 | (5) |
|
11.1.3.2 Patient-to-Institution Data Sharing |
|
|
256 | (1) |
|
11.1.3.3 Patient-to-Patient Data Sharing |
|
|
257 | (3) |
|
|
260 | (6) |
|
11.1.4.1 Precision Medicine |
|
|
261 | (2) |
|
11.1.4.2 Monetization of Medical Data |
|
|
263 | (1) |
|
11.1.4.3 Patient Record Regeneration |
|
|
264 | (2) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
266 | (3) |
12 Decentralized Content Vetting in Social Network with Blockchain |
|
269 | (28) |
|
|
|
|
269 | (1) |
|
|
270 | (1) |
|
12.3 Content Propagation Models in Social Network |
|
|
271 | (2) |
|
12.4 Content Vetting with Blockchains |
|
|
273 | (5) |
|
12.4.1 Overview of the Solution |
|
|
273 | (1) |
|
12.4.2 Unidirectional Offline Channel |
|
|
273 | (2) |
|
12.4.3 Content Vetting with Blockchains |
|
|
275 | (3) |
|
12.5 Optimized Channel Networks |
|
|
278 | (2) |
|
12.6 Simulations of Content Propagation |
|
|
280 | (6) |
|
12.7 Evaluation with Simulations of Social Network |
|
|
286 | (7) |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (3) |
Index |
|
297 | |