Muutke küpsiste eelistusi

E-raamat: Analytic Hyperbolic Geometry in N Dimensions: An Introduction [Taylor & Francis e-raamat]

(North Dakota State University, Fargo, USA)
  • Formaat: 624 pages, 92 Illustrations, black and white
  • Ilmumisaeg: 17-Dec-2014
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9780429174742
  • Taylor & Francis e-raamat
  • Hind: 281,59 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 402,26 €
  • Säästad 30%
  • Formaat: 624 pages, 92 Illustrations, black and white
  • Ilmumisaeg: 17-Dec-2014
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9780429174742
The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry.

Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the authors gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation language of Einstein described in this book plays a universal computational role, which extends far beyond the domain of special relativity.

This book will encourage researchers to use the authors novel techniques to formulate their own results. The book provides new mathematical tools, such as hyperbolic simplexes, for the study of hyperbolic geometry in n dimensions. It also presents a new look at Einsteins special relativity theory.
Preface v
List of Figures
xv
Author's Biography xix
1 Introduction
1(20)
1.1 Gyrovector Spaces in the Service of Analytic Hyperbolic Geometry
1(1)
1.2 When Two Counterintuitive Theories Meet
1(3)
1.3 The Fascinating Rich Mathematical Life of Einstein's Velocity Addition Law
4(9)
1.4 Matrices Assigned to Simplices and to Gyrosimplices
13(2)
1.5 Parts of the Book
15(6)
Part I Einstein Gyrogroups and Gyrovector Spaces
2 Einstein Gyrogroups
21(52)
2.1 Introduction
21(2)
2.2 Einstein Velocity Addition
23(4)
2.3 Einstein Addition for Computer Algebra
27(2)
2.4 Thomas Precession Angle
29(1)
2.5 Einstein Addition with Respect to Cartesian Coordinates
30(3)
2.6 Einstein Addition vs. Vector Addition
33(2)
2.7 Gyrations
35(3)
2.8 From Einstein Velocity Addition to Gyrogroups
38(2)
2.9 Gyrogroup Cooperation (Coaddition)
40(1)
2.10 First Gyrogroup Properties
41(2)
2.11 Elements of Gyrogroup Theory
43(4)
2.12 The Two Basic Gyrogroup Equations
47(2)
2.13 The Basic Gyrogroup Cancellation Laws
49(1)
2.14 Automorphisms and Gyroautomorphisms
50(1)
2.15 Gyrosemidirect Product
51(4)
2.16 Basic Gyration Properties
55(6)
2.17 An Advanced Gyrogroup Equation
61(1)
2.18 Gyrocommutative Gyrogroups
62(11)
Problems
71(2)
3 Einstein Gyrovector Spaces
73(32)
3.1 The Abstract Gyrovector Space
73(4)
3.2 Einstein Scalar Multiplication
77(2)
3.3 Einstein Gyrovector Spaces
79(4)
3.4 Einstein Addition and Differential Geometry
83(1)
3.5 Euclidean Lines
84(5)
3.6 Gyrolines---The Hyperbolic Lines
89(1)
3.7 Euclidean Points and Hyperbolic Gyropoints
89(1)
3.8 Gyroangles---The Hyperbolic Angles
90(1)
3.9 Euclidean Isometries
91(2)
3.10 The Group of Euclidean Motions
93(2)
3.11 Gyroisometries---The Hyperbolic Isometries
95(4)
3.12 Gyromotions---The Motions of Hyperbolic Geometry
99(6)
Problems
103(2)
4 Relativistic Mass Meets Hyperbolic Geometry
105(18)
4.1 Lorentz Transformation and Einstein Addition
105(3)
4.2 Invariant Mass of Particle Systems
108(2)
4.3 Resultant Relativistically Invariant Mass
110(13)
Problems
119(4)
Part II Mathematical Tools for Hyperbolic Geometry
5 Barycentric and Gyrobarycentric Coordinates
123(49)
5.1 Barycentric Coordinates
123(6)
5.2 Segments
129(1)
5.3 Gyrobarycentric Coordinates
130(11)
5.4 Uniqueness of Gyrobarycentric Representations
141(1)
5.5 Gyrovector Gyroconvex Span
142(1)
5.6 Gyrosegments
143(1)
5.7 Triangle Centroid
144(2)
5.8 Gyromidpoint
146(5)
5.9 Gyroline Boundary Points
151(2)
5.10 Gyrotriangle Gyrocentroid
153(7)
5.11 Gyromedial Gyrotriangle and Its Gyrocentroid
160(4)
5.12 Gyropoint to Gyropoint Gyrodistance
164(3)
5.13 Gyrolines in Gyrobarycentric Coordinates
167(5)
Problems
170(2)
6 Gyroparallelograms and Gyroparallelotopes
172(40)
6.1 The Parallelogram Law
172(2)
6.2 Einstein Gyroparallelograms
174(3)
6.3 The Gyroparallelogram Law
177(3)
6.4 The Higher-Dimensional Gyroparallelotope Law
180(4)
6.5 Gyroparallelotopes
184(6)
6.6 Gyroparallelotope Gyrocentroid
190(1)
6.7 Gyroparallelotope: Formal Definition and Theorem
191(5)
6.8 Low Dimensional Gyroparallelotopes
196(9)
6.8.1 Gyrosegment: The One-Dimensional Gyroparallelotope
197(1)
6.8.2 Gyroparallelogram: The Two-Dimensional Gyroparallelotope
198(2)
6.8.3 Gyroparallelepiped: The Three-Dimensional Gyroparallelotope
200(5)
6.9 Hyperbolic Plane Separation
205(1)
6.10 GPSA for the Einstein Gyroplane
206(6)
Problems
211(1)
7 Gyrotrigonometry
212(71)
7.1 Gyroangles
213(3)
7.2 Gyroangle--Angle Relationship
216(2)
7.3 The Law of Gyrocosines
218(1)
7.4 The SSS to AAA Conversion Law
219(1)
7.5 Inequalities for Gyrotriangles
220(2)
7.6 The AAA to SSS Conversion Law
222(5)
7.7 The Law of Sines/Gyrosines
227(1)
7.8 The Law of Gyrosines
228(1)
7.9 The ASA to SAS Conversion Law
229(1)
7.10 Gyrotriangle Defect
230(1)
7.11 Right Gyrotriangles
231(2)
7.12 Gyrotrigonometry
233(7)
7.13 Gyroangle of Parallelism
240(2)
7.14 Useful Gyrotriangle Gyrotrigonometric Identities
242(12)
7.15 A Determinantal Pattern
254(4)
7.16 Determinantal Pattern for Gyrotrigonometry
258(1)
7.17 Gamma--Gyroangle Duality Symmetry for Gyrotriangles
259(8)
7.17.1 From Γ3 to G3 to Γ3
261(3)
7.17.2 rom G3 to Γ3 to G3
264(3)
7.18 The SN to AN and the AN to SN Conversion Laws
267(2)
7.19 Conversion Laws for Right Gyrotriangles
269(4)
7.20 Gyrocosine--Gyrosine Higher Dimensional Pattern
273(10)
7.20.1 Det-Cofactor-Cofactor structure--Gyrotriangles (N= 3)
273(1)
7.20.2 Det-Cofactor-Cofactor structure--Gyrotetrahedra (N= 4)
274(2)
7.20.3 Det-Cofactor-Cofactor structure (N≥ 3)
276(1)
Problems
277(6)
Part III Hyperbolic Triangles and Circles
8 Gyrotriangles and Gyrocircles
283(29)
8.1 Gyrocircles
283(1)
8.2 Gyrotriangle Circumgyrocenter
284(7)
8.3 Triangle Circumcenter, I
291(2)
8.4 Triangle Circumcenter, II
293(1)
8.5 Gyrotriangle Circumgyroradius
294(5)
8.6 Triangle Circumradius
299(1)
8.7 The Gyrocircle Through Three Gyropoints
300(2)
8.8 The Inscribed Gyroangle Theorem I
302(3)
8.9 The Inscribed Gyroangle Theorem II
305(3)
8.10 Gyrocircle Gyrotangent Gyrolines
308(1)
8.11 Semi-Gyrocircle Gyrotriangles
309(3)
Problems
310(2)
9 Gyrocircle Theorems
312(53)
9.1 The Gyrotangent--Gyrosecant Theorem
312(7)
9.2 The Intersecting Gyrosecants Theorem
319(1)
9.3 Gyrocircle Gyrobarycentric Representation
320(6)
9.4 Gyrocircle Interior and Exterior Gyropoints
326(4)
9.5 Circle Barycentric Representation
330(3)
9.6 Gyrocircle--Gyroline Intersection
333(4)
9.7 Gyrocircle--Gyroline Tangency Gyropoints
337(3)
9.8 Gyrocircle Gyrotangent Gyrolength
340(4)
9.9 Circle--Line Tangency Points
344(3)
9.10 Circumgyrocevians
347(7)
9.11 Gyrodistances Related to the Gyrocevian
354(1)
9.12 A Gyrodistance Related to the Circumgyrocevian
355(2)
9.13 Circumgyrocevian Gyrolength
357(1)
9.14 The Intersecting Gyrochords Theorem
358(7)
Problems
360(5)
Part IV Hyperbolic Simplices, Hyperplanes and Hyperspheres in NDimensions
10 Gyrosimplex Gyrogeometry
365(108)
10.1 Gyrotetrahedron Circumgyrocenter
366(4)
10.2 Tetrahedron Circumcenter
370(2)
10.3 Gyrotetrahedron Circumgyroradius
372(2)
10.4 Gyrosimplex Gyrocentroid
374(3)
10.5 Gamma Matrices Assigned to Gyrosimplices
377(2)
10.6 Gamma Matrices Assigned to Gyrosimplex Gyrofaces
379(1)
10.7 Gyrosimplex Gyroaltitudes
380(9)
10.8 Properly Degenerate Gyrosimplices
389(1)
10.9 Gyrosimplex Circumhypergyrosphere
390(11)
10.10 HN as a Modified Gamma Determinant
401(4)
10.11 The Gyrosimplex Constant
405(4)
10.12 The Simplex Constant
409(1)
10.13 Gyropoint to Gyrosimplex Gyrodistance
409(12)
10.13.1 Gyropoint to (N-- 1)-Gyrosimplex Gyrodistance, N= 2
416(4)
10.13.2 Gyropoint to (N-- 1)-Gyrosimplex Gyrodistance, N= 3
420(1)
10.14 Cramer's Rule
421(1)
10.15 Gyroperpendicular Foot of a Gyropoint onto a Gyrosimplex Gyroface
421(19)
10.15.1 Gyroperpendicular Feet from a Gyropoint onto a Gyrotriangle Gyrosides
429(4)
10.15.2 Perpendicular Feet of a Point onto a Triangle Sides
433(2)
10.15.3 Exterior Gyrotriangle Gyroangle
435(4)
10.15.4 Gyroperpendicular Axes, Gyropoint to Gyrotriangle Gyrosides
439(1)
10.16 Gyrosimplex In-Exgyrocenters and In-Exgyroradii
440(4)
10.17 Gyrotriangle In-Exgyrocenters
444(2)
10.18 Gyrosimplex Lemoine Gyropoint
446(8)
10.18.1 Gyrotriangle Lemoine Gyropoint
449(2)
10.18.2 Triangle Lemoine Point
451(3)
10.19 Gyrosimplex p-Gyrocenters
454(3)
10.20 From Gamma Determinants to Cayley--Menger Determinants
457(7)
10.21 Simplex Incenter
464(3)
10.22 Simplex Altitudes
467(1)
10.23 Simplex Circumradius
468(1)
10.24 Gyrosimplex Circumgyrocenter
469(1)
10.25 Simplex Circumcenter
470(3)
Problems
472(1)
11 Gyrotetrahedron Gyrogeometry
473(38)
11.1 Gyroperpendicular Axes, Gyropoint to Gyrotetrahedron Gyrofaces
473(7)
11.1.1 Gyroperpendicular Projection of F4 onto A2 A3
476(1)
11.1.2 Gyroperpendicular Projection of F1 onto A2 A3
477(3)
11.2 The Gamma Matrix of an Internal Gyrotetrahedron
480(4)
11.3 An Internal Properly Degenerate Gyrotetrahedron
484(4)
11.4 Gyrotetrahedron Dihedral Gyroangles
488(4)
11.5 A Conversion Law for Right Gyrotriangles -- Revision
492(3)
11.6 Conversion Laws for Right Gyrotetrahedra
495(6)
11.7 The S4 to A4 Conversion Law for Right Tetrahedra
501(3)
11.8 The Basic Tetrahedronometric Identity
504(7)
Problems
506(5)
Part V Hyperbolic Ellipses and Hyperbolas
12 Gyroellipses and Gyrohyperbolas
511(50)
12.1 Gyroellipses--A Gyrobarycentric Representation
511(6)
12.2 Gyroellipses--Gyrotrigonometric Gyrobarycentric Representation
517(4)
12.3 Gyroellipse Major Gyrovertices
521(6)
12.4 Gyroellipse Minor Gyrovertices
527(4)
12.5 Canonical Gyroellipses
531(1)
12.6 Gyrobarycentric Representation of Canonical Gyroellipses
532(2)
12.7 Barycentric Representation of Canonical Ellipses
534(1)
12.8 Some Properties of Canonical Gyroellipses
535(2)
12.9 Canonical Gyroellipses and Ellipses
537(5)
12.10 Canonical Gyroellipse Equation
542(1)
12.11 A Gyrotrigonometric Constant of the Gyroellipse
543(3)
12.12 Ellipse Eccentricity
546(3)
12.13 Gyroellipse Gyroeccentricity
549(4)
12.14 Gyrohyperbolas--A Gyrobarycentric Representation
553(8)
Problems
557(4)
Part VI Thomas Precession
13 Thomas Precession
561(24)
13.1 Introduction
561(2)
13.2 The Gyrotriangle Defect and Thomas Precession
563(1)
13.3 Thomas Precession
563(2)
13.4 Thomas Precession Matrix
565(1)
13.5 Thomas Precession Graphical Presentation
566(4)
13.6 Thomas Precession Angle
570(4)
13.7 Thomas Precession Frequency
574(3)
13.8 Thomas Precession and Boost Composition
577(5)
13.9 Thomas Precession Angle and its Generating Angle have Opposite Signs
582(3)
Problems
583(2)
Notations and Special Symbols 585(2)
Bibliography 587(8)
Index 595
Abraham Albert Ungar