Preface |
|
v | |
|
|
xv | |
Author's Biography |
|
xix | |
|
|
1 | (20) |
|
1.1 Gyrovector Spaces in the Service of Analytic Hyperbolic Geometry |
|
|
1 | (1) |
|
1.2 When Two Counterintuitive Theories Meet |
|
|
1 | (3) |
|
1.3 The Fascinating Rich Mathematical Life of Einstein's Velocity Addition Law |
|
|
4 | (9) |
|
1.4 Matrices Assigned to Simplices and to Gyrosimplices |
|
|
13 | (2) |
|
|
15 | (6) |
|
Part I Einstein Gyrogroups and Gyrovector Spaces |
|
|
|
|
21 | (52) |
|
|
21 | (2) |
|
2.2 Einstein Velocity Addition |
|
|
23 | (4) |
|
2.3 Einstein Addition for Computer Algebra |
|
|
27 | (2) |
|
2.4 Thomas Precession Angle |
|
|
29 | (1) |
|
2.5 Einstein Addition with Respect to Cartesian Coordinates |
|
|
30 | (3) |
|
2.6 Einstein Addition vs. Vector Addition |
|
|
33 | (2) |
|
|
35 | (3) |
|
2.8 From Einstein Velocity Addition to Gyrogroups |
|
|
38 | (2) |
|
2.9 Gyrogroup Cooperation (Coaddition) |
|
|
40 | (1) |
|
2.10 First Gyrogroup Properties |
|
|
41 | (2) |
|
2.11 Elements of Gyrogroup Theory |
|
|
43 | (4) |
|
2.12 The Two Basic Gyrogroup Equations |
|
|
47 | (2) |
|
2.13 The Basic Gyrogroup Cancellation Laws |
|
|
49 | (1) |
|
2.14 Automorphisms and Gyroautomorphisms |
|
|
50 | (1) |
|
2.15 Gyrosemidirect Product |
|
|
51 | (4) |
|
2.16 Basic Gyration Properties |
|
|
55 | (6) |
|
2.17 An Advanced Gyrogroup Equation |
|
|
61 | (1) |
|
2.18 Gyrocommutative Gyrogroups |
|
|
62 | (11) |
|
|
71 | (2) |
|
3 Einstein Gyrovector Spaces |
|
|
73 | (32) |
|
3.1 The Abstract Gyrovector Space |
|
|
73 | (4) |
|
3.2 Einstein Scalar Multiplication |
|
|
77 | (2) |
|
3.3 Einstein Gyrovector Spaces |
|
|
79 | (4) |
|
3.4 Einstein Addition and Differential Geometry |
|
|
83 | (1) |
|
|
84 | (5) |
|
3.6 Gyrolines---The Hyperbolic Lines |
|
|
89 | (1) |
|
3.7 Euclidean Points and Hyperbolic Gyropoints |
|
|
89 | (1) |
|
3.8 Gyroangles---The Hyperbolic Angles |
|
|
90 | (1) |
|
|
91 | (2) |
|
3.10 The Group of Euclidean Motions |
|
|
93 | (2) |
|
3.11 Gyroisometries---The Hyperbolic Isometries |
|
|
95 | (4) |
|
3.12 Gyromotions---The Motions of Hyperbolic Geometry |
|
|
99 | (6) |
|
|
103 | (2) |
|
4 Relativistic Mass Meets Hyperbolic Geometry |
|
|
105 | (18) |
|
4.1 Lorentz Transformation and Einstein Addition |
|
|
105 | (3) |
|
4.2 Invariant Mass of Particle Systems |
|
|
108 | (2) |
|
4.3 Resultant Relativistically Invariant Mass |
|
|
110 | (13) |
|
|
119 | (4) |
|
Part II Mathematical Tools for Hyperbolic Geometry |
|
|
|
5 Barycentric and Gyrobarycentric Coordinates |
|
|
123 | (49) |
|
5.1 Barycentric Coordinates |
|
|
123 | (6) |
|
|
129 | (1) |
|
5.3 Gyrobarycentric Coordinates |
|
|
130 | (11) |
|
5.4 Uniqueness of Gyrobarycentric Representations |
|
|
141 | (1) |
|
5.5 Gyrovector Gyroconvex Span |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
146 | (5) |
|
5.9 Gyroline Boundary Points |
|
|
151 | (2) |
|
5.10 Gyrotriangle Gyrocentroid |
|
|
153 | (7) |
|
5.11 Gyromedial Gyrotriangle and Its Gyrocentroid |
|
|
160 | (4) |
|
5.12 Gyropoint to Gyropoint Gyrodistance |
|
|
164 | (3) |
|
5.13 Gyrolines in Gyrobarycentric Coordinates |
|
|
167 | (5) |
|
|
170 | (2) |
|
6 Gyroparallelograms and Gyroparallelotopes |
|
|
172 | (40) |
|
6.1 The Parallelogram Law |
|
|
172 | (2) |
|
6.2 Einstein Gyroparallelograms |
|
|
174 | (3) |
|
6.3 The Gyroparallelogram Law |
|
|
177 | (3) |
|
6.4 The Higher-Dimensional Gyroparallelotope Law |
|
|
180 | (4) |
|
|
184 | (6) |
|
6.6 Gyroparallelotope Gyrocentroid |
|
|
190 | (1) |
|
6.7 Gyroparallelotope: Formal Definition and Theorem |
|
|
191 | (5) |
|
6.8 Low Dimensional Gyroparallelotopes |
|
|
196 | (9) |
|
6.8.1 Gyrosegment: The One-Dimensional Gyroparallelotope |
|
|
197 | (1) |
|
6.8.2 Gyroparallelogram: The Two-Dimensional Gyroparallelotope |
|
|
198 | (2) |
|
6.8.3 Gyroparallelepiped: The Three-Dimensional Gyroparallelotope |
|
|
200 | (5) |
|
6.9 Hyperbolic Plane Separation |
|
|
205 | (1) |
|
6.10 GPSA for the Einstein Gyroplane |
|
|
206 | (6) |
|
|
211 | (1) |
|
|
212 | (71) |
|
|
213 | (3) |
|
7.2 Gyroangle--Angle Relationship |
|
|
216 | (2) |
|
7.3 The Law of Gyrocosines |
|
|
218 | (1) |
|
7.4 The SSS to AAA Conversion Law |
|
|
219 | (1) |
|
7.5 Inequalities for Gyrotriangles |
|
|
220 | (2) |
|
7.6 The AAA to SSS Conversion Law |
|
|
222 | (5) |
|
7.7 The Law of Sines/Gyrosines |
|
|
227 | (1) |
|
|
228 | (1) |
|
7.9 The ASA to SAS Conversion Law |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (2) |
|
|
233 | (7) |
|
7.13 Gyroangle of Parallelism |
|
|
240 | (2) |
|
7.14 Useful Gyrotriangle Gyrotrigonometric Identities |
|
|
242 | (12) |
|
7.15 A Determinantal Pattern |
|
|
254 | (4) |
|
7.16 Determinantal Pattern for Gyrotrigonometry |
|
|
258 | (1) |
|
7.17 Gamma--Gyroangle Duality Symmetry for Gyrotriangles |
|
|
259 | (8) |
|
7.17.1 From Γ3 to G3 to Γ3 |
|
|
261 | (3) |
|
7.17.2 rom G3 to Γ3 to G3 |
|
|
264 | (3) |
|
7.18 The SN to AN and the AN to SN Conversion Laws |
|
|
267 | (2) |
|
7.19 Conversion Laws for Right Gyrotriangles |
|
|
269 | (4) |
|
7.20 Gyrocosine--Gyrosine Higher Dimensional Pattern |
|
|
273 | (10) |
|
7.20.1 Det-Cofactor-Cofactor structure--Gyrotriangles (N= 3) |
|
|
273 | (1) |
|
7.20.2 Det-Cofactor-Cofactor structure--Gyrotetrahedra (N= 4) |
|
|
274 | (2) |
|
7.20.3 Det-Cofactor-Cofactor structure (N≥ 3) |
|
|
276 | (1) |
|
|
277 | (6) |
|
Part III Hyperbolic Triangles and Circles |
|
|
|
8 Gyrotriangles and Gyrocircles |
|
|
283 | (29) |
|
|
283 | (1) |
|
8.2 Gyrotriangle Circumgyrocenter |
|
|
284 | (7) |
|
8.3 Triangle Circumcenter, I |
|
|
291 | (2) |
|
8.4 Triangle Circumcenter, II |
|
|
293 | (1) |
|
8.5 Gyrotriangle Circumgyroradius |
|
|
294 | (5) |
|
8.6 Triangle Circumradius |
|
|
299 | (1) |
|
8.7 The Gyrocircle Through Three Gyropoints |
|
|
300 | (2) |
|
8.8 The Inscribed Gyroangle Theorem I |
|
|
302 | (3) |
|
8.9 The Inscribed Gyroangle Theorem II |
|
|
305 | (3) |
|
8.10 Gyrocircle Gyrotangent Gyrolines |
|
|
308 | (1) |
|
8.11 Semi-Gyrocircle Gyrotriangles |
|
|
309 | (3) |
|
|
310 | (2) |
|
|
312 | (53) |
|
9.1 The Gyrotangent--Gyrosecant Theorem |
|
|
312 | (7) |
|
9.2 The Intersecting Gyrosecants Theorem |
|
|
319 | (1) |
|
9.3 Gyrocircle Gyrobarycentric Representation |
|
|
320 | (6) |
|
9.4 Gyrocircle Interior and Exterior Gyropoints |
|
|
326 | (4) |
|
9.5 Circle Barycentric Representation |
|
|
330 | (3) |
|
9.6 Gyrocircle--Gyroline Intersection |
|
|
333 | (4) |
|
9.7 Gyrocircle--Gyroline Tangency Gyropoints |
|
|
337 | (3) |
|
9.8 Gyrocircle Gyrotangent Gyrolength |
|
|
340 | (4) |
|
9.9 Circle--Line Tangency Points |
|
|
344 | (3) |
|
|
347 | (7) |
|
9.11 Gyrodistances Related to the Gyrocevian |
|
|
354 | (1) |
|
9.12 A Gyrodistance Related to the Circumgyrocevian |
|
|
355 | (2) |
|
9.13 Circumgyrocevian Gyrolength |
|
|
357 | (1) |
|
9.14 The Intersecting Gyrochords Theorem |
|
|
358 | (7) |
|
|
360 | (5) |
|
Part IV Hyperbolic Simplices, Hyperplanes and Hyperspheres in NDimensions |
|
|
|
10 Gyrosimplex Gyrogeometry |
|
|
365 | (108) |
|
10.1 Gyrotetrahedron Circumgyrocenter |
|
|
366 | (4) |
|
10.2 Tetrahedron Circumcenter |
|
|
370 | (2) |
|
10.3 Gyrotetrahedron Circumgyroradius |
|
|
372 | (2) |
|
10.4 Gyrosimplex Gyrocentroid |
|
|
374 | (3) |
|
10.5 Gamma Matrices Assigned to Gyrosimplices |
|
|
377 | (2) |
|
10.6 Gamma Matrices Assigned to Gyrosimplex Gyrofaces |
|
|
379 | (1) |
|
10.7 Gyrosimplex Gyroaltitudes |
|
|
380 | (9) |
|
10.8 Properly Degenerate Gyrosimplices |
|
|
389 | (1) |
|
10.9 Gyrosimplex Circumhypergyrosphere |
|
|
390 | (11) |
|
10.10 HN as a Modified Gamma Determinant |
|
|
401 | (4) |
|
10.11 The Gyrosimplex Constant |
|
|
405 | (4) |
|
10.12 The Simplex Constant |
|
|
409 | (1) |
|
10.13 Gyropoint to Gyrosimplex Gyrodistance |
|
|
409 | (12) |
|
10.13.1 Gyropoint to (N-- 1)-Gyrosimplex Gyrodistance, N= 2 |
|
|
416 | (4) |
|
10.13.2 Gyropoint to (N-- 1)-Gyrosimplex Gyrodistance, N= 3 |
|
|
420 | (1) |
|
|
421 | (1) |
|
10.15 Gyroperpendicular Foot of a Gyropoint onto a Gyrosimplex Gyroface |
|
|
421 | (19) |
|
10.15.1 Gyroperpendicular Feet from a Gyropoint onto a Gyrotriangle Gyrosides |
|
|
429 | (4) |
|
10.15.2 Perpendicular Feet of a Point onto a Triangle Sides |
|
|
433 | (2) |
|
10.15.3 Exterior Gyrotriangle Gyroangle |
|
|
435 | (4) |
|
10.15.4 Gyroperpendicular Axes, Gyropoint to Gyrotriangle Gyrosides |
|
|
439 | (1) |
|
10.16 Gyrosimplex In-Exgyrocenters and In-Exgyroradii |
|
|
440 | (4) |
|
10.17 Gyrotriangle In-Exgyrocenters |
|
|
444 | (2) |
|
10.18 Gyrosimplex Lemoine Gyropoint |
|
|
446 | (8) |
|
10.18.1 Gyrotriangle Lemoine Gyropoint |
|
|
449 | (2) |
|
10.18.2 Triangle Lemoine Point |
|
|
451 | (3) |
|
10.19 Gyrosimplex p-Gyrocenters |
|
|
454 | (3) |
|
10.20 From Gamma Determinants to Cayley--Menger Determinants |
|
|
457 | (7) |
|
|
464 | (3) |
|
|
467 | (1) |
|
10.23 Simplex Circumradius |
|
|
468 | (1) |
|
10.24 Gyrosimplex Circumgyrocenter |
|
|
469 | (1) |
|
10.25 Simplex Circumcenter |
|
|
470 | (3) |
|
|
472 | (1) |
|
11 Gyrotetrahedron Gyrogeometry |
|
|
473 | (38) |
|
11.1 Gyroperpendicular Axes, Gyropoint to Gyrotetrahedron Gyrofaces |
|
|
473 | (7) |
|
11.1.1 Gyroperpendicular Projection of F4 onto A2 A3 |
|
|
476 | (1) |
|
11.1.2 Gyroperpendicular Projection of F1 onto A2 A3 |
|
|
477 | (3) |
|
11.2 The Gamma Matrix of an Internal Gyrotetrahedron |
|
|
480 | (4) |
|
11.3 An Internal Properly Degenerate Gyrotetrahedron |
|
|
484 | (4) |
|
11.4 Gyrotetrahedron Dihedral Gyroangles |
|
|
488 | (4) |
|
11.5 A Conversion Law for Right Gyrotriangles -- Revision |
|
|
492 | (3) |
|
11.6 Conversion Laws for Right Gyrotetrahedra |
|
|
495 | (6) |
|
11.7 The S4 to A4 Conversion Law for Right Tetrahedra |
|
|
501 | (3) |
|
11.8 The Basic Tetrahedronometric Identity |
|
|
504 | (7) |
|
|
506 | (5) |
|
Part V Hyperbolic Ellipses and Hyperbolas |
|
|
|
12 Gyroellipses and Gyrohyperbolas |
|
|
511 | (50) |
|
12.1 Gyroellipses--A Gyrobarycentric Representation |
|
|
511 | (6) |
|
12.2 Gyroellipses--Gyrotrigonometric Gyrobarycentric Representation |
|
|
517 | (4) |
|
12.3 Gyroellipse Major Gyrovertices |
|
|
521 | (6) |
|
12.4 Gyroellipse Minor Gyrovertices |
|
|
527 | (4) |
|
12.5 Canonical Gyroellipses |
|
|
531 | (1) |
|
12.6 Gyrobarycentric Representation of Canonical Gyroellipses |
|
|
532 | (2) |
|
12.7 Barycentric Representation of Canonical Ellipses |
|
|
534 | (1) |
|
12.8 Some Properties of Canonical Gyroellipses |
|
|
535 | (2) |
|
12.9 Canonical Gyroellipses and Ellipses |
|
|
537 | (5) |
|
12.10 Canonical Gyroellipse Equation |
|
|
542 | (1) |
|
12.11 A Gyrotrigonometric Constant of the Gyroellipse |
|
|
543 | (3) |
|
12.12 Ellipse Eccentricity |
|
|
546 | (3) |
|
12.13 Gyroellipse Gyroeccentricity |
|
|
549 | (4) |
|
12.14 Gyrohyperbolas--A Gyrobarycentric Representation |
|
|
553 | (8) |
|
|
557 | (4) |
|
Part VI Thomas Precession |
|
|
|
|
561 | (24) |
|
|
561 | (2) |
|
13.2 The Gyrotriangle Defect and Thomas Precession |
|
|
563 | (1) |
|
|
563 | (2) |
|
13.4 Thomas Precession Matrix |
|
|
565 | (1) |
|
13.5 Thomas Precession Graphical Presentation |
|
|
566 | (4) |
|
13.6 Thomas Precession Angle |
|
|
570 | (4) |
|
13.7 Thomas Precession Frequency |
|
|
574 | (3) |
|
13.8 Thomas Precession and Boost Composition |
|
|
577 | (5) |
|
13.9 Thomas Precession Angle and its Generating Angle have Opposite Signs |
|
|
582 | (3) |
|
|
583 | (2) |
Notations and Special Symbols |
|
585 | (2) |
Bibliography |
|
587 | (8) |
Index |
|
595 | |