Muutke küpsiste eelistusi

E-raamat: Aerospace Navigation Systems [Wiley Online]

Edited by , Edited by
  • Formaat: 392 pages
  • Ilmumisaeg: 29-Jul-2016
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119163064
  • ISBN-13: 9781119163060
Teised raamatud teemal:
  • Wiley Online
  • Hind: 148,02 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 392 pages
  • Ilmumisaeg: 29-Jul-2016
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119163064
  • ISBN-13: 9781119163060
Teised raamatud teemal:

Compiled by leading authorities, Aerospace Navigation Systems is a compendium of chapters that present modern aircraft and spacecraft navigation methods based on up-to-date inertial, satellite, map matching and other guidance techniques. Ranging from the practical to the theoretical, this book covers navigational applications over a wide range of aerospace vehicles including aircraft, spacecraft and drones, both remotely controlled and operating as autonomous vehicles.  It provides a comprehensive background of fundamental theory, the utilisation of newly-developed techniques, incorporates the most complex and advanced types of technical innovation currently available and presents a vision for future developments. Satellite Navigation Systems (SNS), long range navigation systems, short range navigation systems and navigational displays are introduced, and many other detailed topics include Radio Navigation Systems (RNS), Inertial Navigation Systems (INS), Homing Systems, Map Matching and other correlated-extremalsystems, and both  optimal and sub-optimal filtering in integrated navigation systems.

The Editors xi
Acknowledgments xii
List of Contributors xiii
Preface xv
1 Inertial Navigation Systems 1(25)
Michael S. Braasch
1.1 Introduction
1(1)
1.2 The Accelerometer Sensing Equation
2(1)
1.3 Reference Frames
3(2)
1.3.1 True Inertial Frame
3(1)
1.3.2 Earth-Centered Inertial Frame or i-Frame
3(1)
1.3.3 Earth-Centered Earth-Fixed Frame or e-Frame
3(1)
1.3.4 Navigation Frame
3(1)
1.3.5 Body Frame
4(1)
1.3.6 Sensor Frames (a-Frame, g-Frame)
5(1)
1.4 Direction Cosine Matrices and Quaternions
5(1)
1.5 Attitude Update
6(4)
1.5.1 Body Frame Update
7(1)
1.5.2 Navigation Frame Update
8(1)
1.5.3 Euler Angle Extraction
9(1)
1.6 Navigation Mechanization
10(1)
1.7 Position Update
11(1)
1.8 INS Initialization
12(2)
1.9 INS Error Characterization
14(9)
1.9.1 Mounting Errors
14(1)
1.9.2 Initialization Errors
14(1)
1.9.3 Sensor Errors
14(1)
1.9.4 Gravity Model Errors
14(1)
1.9.5 Computational Errors
15(1)
1.9.6 Simulation Examples
15(8)
1.10 Calibration and Compensation
23(1)
1.11 Production Example
24(1)
References
25(1)
2 Satellite Navigation Systems 26(83)
Walter Geri
Boris V. Shebshaevich
Matteo Zanzi
2.1 Introduction
26(1)
2.2 Preliminary Considerations
27(1)
2.3 Navigation Problems Using Satellite Systems
27(11)
2.3.1 The Geometrical Problem
28(1)
2.3.2 Reference Coordinate Systems
29(4)
2.3.3 The Classical Mathematical Model
33(5)
2.4 Satellite Navigation Systems (GNSS)
38(27)
2.4.1 The Global Positioning System
38(13)
2.4.2 GLONASS
51(5)
2.4.3 Galileo
56(5)
2.4.4 BeiDou (Compass)
61(2)
2.4.5 State and Development of the Japanese QZSS
63(1)
2.4.6 State and Development of the IRNSS
64(1)
2.5 GNSS Observables
65(10)
2.5.1 Carrier-Phase Observables
65(3)
2.5.2 Doppler Frequency Observables
68(1)
2.5.3 Single-Difference Observables
69(2)
2.5.4 Double-Difference Observables
71(1)
2.5.5 Triple-Difference Observables
72(1)
2.5.6 Linear Combinations
72(2)
2.5.7 Integer Ambiguity Resolution
74(1)
2.6 Sources of Error
75(7)
2.6.1 Ionosphere Effects
77(3)
2.6.2 Troposphere Effects
80(1)
2.6.3 Selective Availability (SA) Effects
81(1)
2.6.4 Multipath Effects
82(1)
2.6.5 Receiver Noise
82(1)
2.7 GNSS Receivers
82(8)
2.7.1 Receiver Architecture
82(3)
2.7.2 Carrier Smoothing
85(2)
2.7.3 Attitude Estimation
87(1)
2.7.4 Typical Receivers on the Market
88(2)
2.8 Augmentation Systems
90(7)
2.8.1 Differential Techniques
90(2)
2.8.2 The Precise Point Positioning (PPP) Technique
92(1)
2.8.3 Satellite-Based Augmentation Systems
93(4)
2.9 Integration of GNSS with Other Sensors
97(3)
2.9.1 GNSS/INS
98(2)
2.10 Aerospace Applications
100(5)
2.10.1 The Problem of Integrity
101(2)
2.10.2 Air Navigation: En Route, Approach, and Landing
103(1)
2.10.3 Surveillance and Air Traffic Control (ATC)
103(2)
2.10.4 Space Vehicle Navigation
105(1)
References
105(4)
3 Radio Systems for Long-Range Navigation 109(32)
Anatoly V. Balm
Sergey P. Zarubin
3.1 Introduction
109(2)
3.2 Principles of Operation
111(5)
3.3 Coverage
116(2)
3.4 Interference in VLF and LF Radio-Navigation Systems
118(4)
3.5 Error Budget
122(4)
3.5.1 Loran-C and CHAYKA Error Budget
122(2)
3.5.2 ALPHA and OMEGA Error Budget
124(1)
3.5.3 Position Error
125(1)
3.6 LF Radio System Modernization
126(6)
3.6.1 EUROFIX-Regional GNSS Differential Subsystem
127(2)
3.6.2 Enhanced Loran
129(1)
3.6.3 Enhanced Differential Loran
130(2)
3.7 User Equipment
132(6)
References
138(3)
4 Radio Systems for Short-Range Navigation 141(21)
J. Paul Sims
Joseph Watson
4.1 Overview of Short-Range Navigational Aids
141(1)
4.2 Nondirectional Radio Beacon and the "Automatic Direction Finder"
142(6)
4.2.1 Operation and Controls
143(5)
4.3 VHF Omni-Directional Radio Range
148(6)
4.3.1 Basic VOR Principles
148(1)
4.3.2 The Doppler VOR
149(5)
4.4 DME and TACAN Systems
154(6)
4.4.1 DME Equipment
154(2)
4.4.2 Tactical Air Navigation
156(1)
4.4.3 The VORTAC Station
156(2)
4.4.4 The Radiotechnical Short-Range Navigation System
158(1)
4.4.5 Principles of Operation and Construction of the RSBN System
159(1)
References
160(2)
5 Radio Technical Landing Systems 162(17)
J. Paul Sims
5.1 Instrument Landing Systems
162(7)
5.1.1 The Marker Beacons
162(2)
5.1.2 Approach Guidance-Ground Installations
164(3)
5.1.3 Approach Guidance-Aircraft Equipment
167(1)
5.1.4 CAT II and III Landing
167(2)
5.2 Microwave Landing Systems-Current Status
169(2)
5.2.1 MLS Basic Concepts
170(1)
5.2.2 MLS Functionality
170(1)
5.3 Ground-Based Augmentation System
171(3)
5.3.1 Current Status
172(1)
5.3.2 Technical Features
172(2)
5.4 Lighting Systems-Airport Visual Landing Aids and Other Short-Range Optical Navigation Systems
174(3)
5.4.1 The Visual Approach Slope Indicator
175(1)
5.4.2 Precision Approach Path Indicator
176(1)
5.4.3 The Final Approach Runway Occupancy Signal
177(1)
References
177(2)
6 Correlated-Extremal Systems and Sensors 179(23)
Evgeny A. Konovalov
Sergey P. Faleev
6.1 Construction Principles
179(10)
6.1.1 General Information
182(4)
6.1.2 Mathematical Foundation
186(1)
6.1.3 Basic CES Elements and Units
187(1)
6.1.4 Analog and Digital Implementation Methods
187(2)
6.2 Image Sensors for CES
189(3)
6.3 Aviation and Space CES
192(5)
6.3.1 Astro-Orientation CES
193(1)
6.3.2 Navigational CES
193(1)
6.3.3 Aviation Guidance via Television Imaging
194(3)
6.4 Prospects for CES Development
197(3)
6.4.1 Combined CES
197(1)
6.4.2 Micro-Miniaturization of CES and the Constituent Components
198(1)
6.4.3 Prospects for CES Improvement
198(1)
6.4.4 New Properties and Perspectives in CES
199(1)
References
200(2)
7 Homing Devices 202(42)
Georgy V. Antsev
Valentine A. Sarychev
7.1 Introduction
202(3)
7.2 Definition of Homing Devices
205(7)
7.2.1 Homing Systems for Autonomous and Group Operations
205(1)
7.2.2 Guidance and Homing Systems
206(1)
7.2.3 Principles and Classification of Homing Devices
207(5)
7.3 Homing Device Functioning in Signal Fields
212(9)
7.3.1 Characteristics of Homing Device Signal Fields
212(2)
7.3.2 Optoelectronic Sensors for Homing Devices
214(1)
7.3.3 Radar Homing Devices
215(6)
7.4 Characteristics of Homing Methods
221(6)
7.4.1 Aerospace Vehicle Homing Methods
221(5)
7.4.2 Homing Device Dynamic Errors
226(1)
7.5 Homing Device Efficiency
227(3)
7.5.1 Homing Device Accuracy
228(1)
7.5.2 Homing Device Dead Zones
229(1)
7.6 Radio Proximity Fuze
230(2)
7.7 Homing Device Functioning Under Jamming Conditions
232(6)
7.8 Intelligent Homing Devices
238(2)
References
240(4)
8 Optimal and Suboptimal Filtering in Integrated Navigation Systems 244(55)
Oleg A. Stepanov
8.1 Introduction
244(1)
8.2 Filtering Problems: Main Approaches and Algorithms
244(14)
8.2.1 The Least Squares Method
245(1)
8.2.2 The Wiener Approach
246(3)
8.2.3 The Kalman Approach
249(3)
8.2.4 Comparison of Kalman and Wiener Approaches
252(2)
8.2.5 Beyond the Kalman Filter
254(4)
8.3 Filtering Problems for Integrated Navigation Systems
258(13)
8.3.1 Filtering Problems Encountered in the Processing of Data from Systems Directly Measuring the Parameters to be Estimated
259(5)
8.3.2 Filtering Problems in Aiding a Navigation System (Linearized Case)
264(2)
8.3.3 Filtering Problems in Aiding a Navigation System (Nonlinear Case)
266(5)
8.4 Filtering Algorithms for Processing Data from Inertial and Satellite Systems
271(14)
8.4.1 Inertial System Error Models
272(5)
8.4.2 The Filtering Problem in Loosely Coupled INS/SNS
277(1)
8.4.3 The Filtering Problem in Tightly Coupled INS/SNS
278(3)
8.4.4 Example of Filtering Algorithms for an Integrated INS/SNS
281(4)
8.5 Filtering and Smoothing Problems Based on the Combined Use of Kalman and Wiener Approaches for Aviation Gravimetry
285(10)
8.5.1 Statement of the Optimal Filtering and Smoothing Problems in the Processing of Gravimeter and Satellite Measurements
286(2)
8.5.2 Problem Statement and Solution within the Kalman Approach
288(3)
8.5.3 Solution Using the Method of PSD Local Approximations
291(4)
Acknowledgment
295(1)
References
295(4)
9 Navigational Displays 299(22)
Ron T. Ogan
9.1 Introduction to Modern Aerospace Navigational Displays
299(7)
9.1.1 The Human Interface for Display Control-Buttonology
300(4)
9.1.2 Rapidly Configurable Displays for Glass Cockpit Customization Purposes
304(2)
9.2 A Global Positioning System Receiver and Map Display
306(7)
9.2.1 Databases
308(2)
9.2.2 Fully Integrated Flight Control
310(1)
9.2.3 Advanced AHRS Architecture
310(1)
9.2.4 Weather and Digital Audio Functions
310(1)
9.2.5 Traffic Information Service
311(2)
9.3 Automatic Dependent Surveillance-Broadcast (ADS-B) System Displays
313(2)
9.4 Collision Avoidance and Ground Warning Displays
315(4)
9.4.1 Terrain Awareness Warning System (TAWS): Classes A and B
318(1)
Appendix: Terminology and Review of Some US Federal Aviation Regulations
319(1)
References
319(2)
10 Unmanned Aerospace Vehicle Navigation 321(40)
Vladimir Y. Raspopov
Alexander V. Nebylov
Sukrit Sharan
Bijay Agarwal
10.1 The Unmanned Aerospace Vehicle
321(1)
10.2 Small-Sized UAVs
321(5)
10.3 The UAV as a Controlled Object
326(3)
10.4 UAV Navigation
329(14)
10.4.1 Methods of Controlling Flight Along Intended Tracks
331(2)
10.4.2 Basic Equations for UAV Inertial Navigation
333(6)
10.4.3 Algorithms for Four-Dimensional (Terminal) Navigation
339(4)
10.5 Examples of Construction and Technical Characteristics of the Onboard Avionic Control Equipment
343(6)
10.6 Small-Sized Unmanned WIG and Amphibious UAVs
349(10)
10.6.1 Emerging Trends in the Development of Unmanned WIG UAVs and USVs, and Amphibious UAVs
350(4)
10.6.2 Radio Altimeter and Inertial Sensor Integration
354(2)
10.6.3 Development of Control Systems for Unmanned WIG Aircraft and Amphibious UAVs
356(2)
10.6.4 The Design of High-precision Instruments and Sensor Integration for the Measurement of Low Altitudes
358(1)
References
359(2)
Index 361
Alexander V. Nebylov, State University of Aerospace Instrumentation, Russia Professor and Chairman of Aerospace Devices and Measuring Complexes, State University of Aerospace Instrumentation in St. Petersburg and Director of the International Institute for Advanced Aerospace Technologies. He is a member of the leadership of the IFAC Aerospace Technical Committee since 2002.

Dr. Joseph Watson, Swansea University, UK Dr. Joseph Watson is retired former Associate Editor of the IEEE Sensors Journal and Visiting Professor at the University of Calgary, Canada, the University of California, Davis and Santa Barbara. He is a Fellow of IET, Senior Member of the IEEE. Dr. Watson has continued as President of the UK-based Gas Analysis and Sensing Group.