Preface |
|
xv | |
|
Section I Differential Geometry, Classical and Discrete |
|
|
|
|
3 | (46) |
|
|
4 | (2) |
|
|
6 | (21) |
|
1.2.1 The Osculating Circle |
|
|
7 | (6) |
|
|
13 | (4) |
|
1.2.2.1 Applications Of Menger Curvature |
|
|
17 | (3) |
|
|
20 | (4) |
|
1.2.4 Applications Of Haantjes Curvature |
|
|
24 | (3) |
|
|
27 | (20) |
|
1.3.1 The Serret-Frenet Formulas |
|
|
29 | (6) |
|
1.3.2 Haantjes Curvature Revisited |
|
|
35 | (1) |
|
1.3.3 The Local Canonical Form |
|
|
36 | (3) |
|
1.3.4 Existence And Uniqueness Theorem |
|
|
39 | (1) |
|
|
40 | (6) |
|
1.3.5.1 The Metric Existence And Uniqueness Theorem Of Curves |
|
|
46 | (1) |
|
1.4 Higher Dimensional Curves |
|
|
47 | (2) |
|
Chapter 2 Surfaces: Gauss Curvature - First Definition |
|
|
49 | (42) |
|
|
49 | (5) |
|
2.2 Gauss Curvature - First Definition |
|
|
54 | (9) |
|
2.3 The Fundamental Forms |
|
|
63 | (22) |
|
2.3.1 The First Fundamental Form |
|
|
63 | (3) |
|
|
66 | (2) |
|
2.3.1.2 The Second Fundamental Form |
|
|
68 | (8) |
|
2.3.1.3 Distinguished Curves Revisited |
|
|
76 | (9) |
|
2.4 Some Implementation Aspects |
|
|
85 | (6) |
|
Chapter 3 Metrization Of Gauss Curvature |
|
|
91 | (22) |
|
3.1 Metric Approximation Of Sectional Curvatures |
|
|
91 | (4) |
|
|
95 | (18) |
|
3.2.1 Computation Of Wald Curvature I: The Exact Formula |
|
|
102 | (2) |
|
3.2.2 Computation Of Wald Curvature II: An Approximation |
|
|
104 | (4) |
|
3.2.3 Applications Of Wald Curvature |
|
|
108 | (1) |
|
3.2.4 Wald Curvature Revisited |
|
|
109 | (4) |
|
Chapter 4 Gauss Curvature And Theorema Egregium |
|
|
113 | (36) |
|
|
113 | (28) |
|
4.1.1 The Tube Formula And Approximation Of Surface Curvatures |
|
|
131 | (10) |
|
|
141 | (8) |
|
Chapter 5 The Mean And Gauss Curvature Flows |
|
|
149 | (8) |
|
5.1 Curve Shortening Flow |
|
|
149 | (4) |
|
|
153 | (1) |
|
|
154 | (3) |
|
|
157 | (36) |
|
|
157 | (5) |
|
|
162 | (20) |
|
6.2.1 The Hopf-Rinow Theorem |
|
|
181 | (1) |
|
6.3 Discretization Of Geodesics |
|
|
182 | (11) |
|
Chapter 7 Geodesies And Curvature |
|
|
193 | (14) |
|
7.1 Gauss Curvature And Parallel Transport |
|
|
203 | (4) |
|
Chapter 8 The Equations Of Compatibility |
|
|
207 | (6) |
|
8.1 Applications And Discretizations |
|
|
211 | (2) |
|
Chapter 9 The Gauss-Bonnet Theorem And The Poincare Index Theorem |
|
|
213 | (26) |
|
9.1 The Gauss-Bonnet Theorem |
|
|
213 | (12) |
|
9.1.1 The Local Gauss-Bonnet Theorem |
|
|
214 | (2) |
|
9.1.2 The Global Gauss-Bonnet Theorem |
|
|
216 | (9) |
|
9.2 The Poincare Index Theorem |
|
|
225 | (14) |
|
9.2.1 Discretizations Of The Gauss-Bonnet Theorem |
|
|
231 | (4) |
|
9.2.2 Discretizations Of The Poincare Index Theorem |
|
|
235 | (4) |
|
Chapter 10 Higher Dimensional Curvatures |
|
|
239 | (10) |
|
10.1 Motivation And Basics |
|
|
239 | (10) |
|
10.1.1 The Curvature Tensor |
|
|
240 | (1) |
|
10.1.2 Sectional Curvature |
|
|
240 | (2) |
|
|
242 | (5) |
|
|
247 | (2) |
|
Chapter 11 Higher Dimensional Curvatures 2 |
|
|
249 | (18) |
|
|
249 | (1) |
|
11.2 The Lipschitz-Killing Curvatures |
|
|
249 | (6) |
|
11.2.1 Curvatures' Approximation |
|
|
251 | (1) |
|
11.2.1.1 Thick Triangulations |
|
|
251 | (2) |
|
11.2.1.2 Curvatures' Approximation Results |
|
|
253 | (2) |
|
11.3 Generalized Principal Curvatures |
|
|
255 | (1) |
|
|
256 | (11) |
|
11.4.1 Banchoff's Definition Revisited |
|
|
256 | (1) |
|
11.4.2 Stone's Sectional Curvature |
|
|
257 | (1) |
|
11.4.3 Glickenstein's Sectional, Ricci And Scalar Curvatures |
|
|
258 | (2) |
|
11.4.4 The Ricci Tensor Of Alsing And Miller |
|
|
260 | (1) |
|
11.4.5 The Metric Approach |
|
|
260 | (1) |
|
11.4.5.1 Metrization Of The Lipschitz-Killing Curvatures |
|
|
261 | (2) |
|
11.4.5.2 A Metric Gauss-Bonnet Theorem And Pl Curvatures |
|
|
263 | (4) |
|
Chapter 12 Discrete Ricci Curvature And Flow |
|
|
267 | (50) |
|
12.1 Pl Manifolds - From Combinatorial To Metric Ricci Curvature |
|
|
267 | (15) |
|
12.1.1 Definition And Convergence |
|
|
268 | (5) |
|
12.1.2 The Bonnet-Myers Theorem |
|
|
273 | (1) |
|
12.1.2.1 The 2-Dimensional Case |
|
|
273 | (6) |
|
12.1.2.2 Wald Curvature And Alexandrov Spaces |
|
|
279 | (2) |
|
12.1.3 A Comparison Theorem |
|
|
281 | (1) |
|
12.2 Ricci Curvature And Flow For 2-Dimensional Pl Surfaces |
|
|
282 | (26) |
|
12.2.1 Combinatorial Surface Ricci Flow |
|
|
282 | (17) |
|
12.2.2 The Metric Ricci Flow For Surfaces |
|
|
299 | (1) |
|
12.2.2.1 Smoothings And Metric Curvatures |
|
|
300 | (1) |
|
12.2.2.2 A Metric Ricci Flow |
|
|
301 | (5) |
|
12.2.3 Combinatorial Yamabe Flow |
|
|
306 | (2) |
|
12.3 Ricci Curvature And Flow For Networks |
|
|
308 | (9) |
|
12.3.1 Metric Ricci Curvature Of Networks |
|
|
308 | (2) |
|
12.3.2 Ollivier Ricci Curvature |
|
|
310 | (7) |
|
Chapter 13 Weighted Manifolds And Ricci Curvature Revisited |
|
|
317 | (22) |
|
|
318 | (6) |
|
13.1.1 The Curvature-Dimension Condition Of Lott-Villani And Sturm |
|
|
319 | (2) |
|
|
321 | (1) |
|
13.1.2.1 Curvature Of Curves In Weighted Surfaces |
|
|
321 | (1) |
|
13.1.2.2 The Mean Curvature Of Weighted Surfaces |
|
|
322 | (1) |
|
13.1.2.3 Gauss Curvature Of Weighted Surfaces |
|
|
323 | (1) |
|
13.2 Forman-Ricci Curvature |
|
|
324 | (15) |
|
|
324 | (2) |
|
13.2.2 Two-Dimensional Complexes |
|
|
326 | (7) |
|
13.2.3 The Forman-Ricci Curvature Of Networks |
|
|
333 | (3) |
|
13.2.3.1 From Networks To Simplicial Complexes |
|
|
336 | (3) |
|
Section II Differential Geometry, Computational Aspects |
|
|
|
Chapter 14 Algebraic Topology |
|
|
339 | (30) |
|
|
339 | (2) |
|
|
341 | (4) |
|
|
345 | (3) |
|
14.4 Word Group Representation |
|
|
348 | (1) |
|
14.5 Fundamental Group Canonical Representation |
|
|
349 | (7) |
|
|
356 | (4) |
|
14.7 Computational Algorithms |
|
|
360 | (9) |
|
Chapter 15 Homology And Cohomology Group |
|
|
369 | (24) |
|
|
369 | (6) |
|
15.2 Homology Vs. Homotopy |
|
|
375 | (3) |
|
15.3 Simplicial Cohomology |
|
|
378 | (4) |
|
|
382 | (3) |
|
|
385 | (4) |
|
15.6 Computational Algorithms |
|
|
389 | (4) |
|
Chapter 16 Exterior Calculus And Hodge Decomposition |
|
|
393 | (28) |
|
16.1 Exterior Differentials |
|
|
393 | (4) |
|
|
397 | (1) |
|
|
398 | (5) |
|
|
403 | (5) |
|
16.5 Discrete Hodge Theory |
|
|
408 | (13) |
|
|
421 | (16) |
|
17.1 Planar Harmonic Maps |
|
|
421 | (4) |
|
17.2 Surface Harmonic Maps |
|
|
425 | (3) |
|
17.3 Discrete Harmonic Map |
|
|
428 | (3) |
|
17.4 Computational Algorithm |
|
|
431 | (6) |
|
Chapter 18 Riemann Surface |
|
|
437 | (12) |
|
|
437 | (3) |
|
18.2 Meromorphic Differential |
|
|
440 | (4) |
|
18.3 Riemann-Roch Theorem |
|
|
444 | (2) |
|
18.4 Abel-Jacobian Theorem |
|
|
446 | (3) |
|
Chapter 19 Conformal Mapping |
|
|
449 | (28) |
|
19.1 Topological Quadrilateral |
|
|
449 | (4) |
|
|
453 | (4) |
|
19.3 Riemann Mapping For Topological Disk |
|
|
457 | (2) |
|
19.4 Topological Poly-Annulus Slit Map |
|
|
459 | (6) |
|
19.5 Koebe's Iteration For Poly Annulus |
|
|
465 | (10) |
|
|
475 | (2) |
|
Chapter 20 Discrete Surface Curvature Flows |
|
|
477 | (20) |
|
|
477 | (2) |
|
|
479 | (2) |
|
|
481 | (2) |
|
20.4 Discrete Surface Yamabe Flow |
|
|
483 | (3) |
|
20.5 Topological Quadrilateral |
|
|
486 | (4) |
|
|
490 | (2) |
|
20.7 Topological Poly-Annulus |
|
|
492 | (2) |
|
|
494 | (3) |
|
Chapter 21 Mesh Generation Based On Abel-Jacobi Theorem |
|
|
497 | (24) |
|
21.1 Quad-Meshes And Meromorphic Quartic Forms |
|
|
497 | (7) |
|
21.2 Metrics With Special Holonomies |
|
|
504 | (5) |
|
|
509 | (12) |
|
|
|
Appendix A Alexandrov Curvature |
|
|
521 | (1) |
|
|
521 | (1) |
|
A.2 Alexandrov Curvature Vs. Wald Curvature |
|
|
522 | (2) |
|
|
524 | (3) |
|
Appendix B Thick Triangulations Revisited |
|
|
527 | (4) |
|
Appendix C The Gromov-Hausdorff Distance |
|
|
531 | (8) |
Bibliography |
|
539 | (24) |
Index |
|
563 | |